
Diagram, Debug, Fold:
Computer Programming as a Form of Critique

Olivia Kan-Sperling
Honors Thesis in Modern Culture and Media (A.B., Track II)
Brown University, April 2020

First reader: Péter Szendy
Second reader: Joan Copjec

TABLE OF CONTENTS

Introduction……………………………………. 1
A specification of scale: What is programming?

Chapter 1. Scale and Diagram……………… 6
Programming as figuration ~ Topologies and
terrain ~ The Diagram

Chapter 2. Bugs and Materiality……………. 34
Supplement, Support, Software ~ Variables and
Polyvocality ~ Failure: Bugs and edge cases

Chapter 3. The User: Technologies of Self… 52
Runtime and recursion; the pharmakon ~
Reading and surprise: Bugs as symptoms ~ the
Superfold ~ Technologies of the self ~ Getting
free: Going on a trip/voyage, exercise

Conclusion…………………………………… 74
The content of critique? ~ Irony and the
(originary) technicity of critique

Thanks…………………………………………. 82
Bibliography…………………………………… 83

INTRODUCTION

The author has never, in any sense, photographed Japan. Rather, he has done the
opposite: Japan has starred him with any number of ‘flashes’; or, better still, Japan has
afforded him a situation of writing. This situation is the very one in which a certain
disturbance of the person occurs…
 - Roland Barthes, The Empire of Signs. 1

If, in the new-ish fields of new media or software studies, much has been done to apply various

semiotic frameworks to “digital objects,” less attention has been paid to the process of making

such texts (code, media, architectures). Few have asked, what it is like to program? One aim of 2

this thesis is to offer such a description: of the practice or “experience” of computer

programming. Although I hope this description might resonate with programmers, and my

analysis is founded both on my own coding experience, and accounts of computer scientists, my

primary goal is not to provide a “photograph” or an ethnography. Just as Barthes does in his

beautiful study of a “Japan” that, he emphasizes, he has partially invented, I write on computer

science by isolating “a certain number of features (a term employed in linguistics), and out of

these features deliberately [forming] a system.” Like Barthes’s description of the “Japanese” 3

signifying system composed of tempura or chopsticks, this project takes a semiotic perspective––

though its object is less the linguistic system of code itself, and more what it is like to interact

with it. So we will ask, more specifically, after something like the “semiotic experience” of

programming: In what way can we call programming reading or writing?

 Programs share many obvious and superficial characteristics with printed texts (for

example: being composed of discrete, alphanumeric characters; like books in the West, read from

left to right and top to bottom; like in the English language, containing symbols such as “print,”

“and,” “list”). But the more specific concepts of reading and writing to which I compare

 Roland Barthes, Empire of Signs (New York: Hill and Wang, 1982), 4.1

 Particularly noteworthy among these theorists, and those which I will both draw upon and argue 2

against here, are: Lev Manovich, Wendy Hui Kyong Chun, N. Katherine Hayles, Alexander
Galloway. Their work is often on the object, and sometimes on the user, but rarely on the writer of
new media.
 Barthes, Empire, 3. 3

1

programming are patterned on the work of several theorists whose own reading and writing

practices are most “isomorphic” with the features of programming in which I am interested. In

the language of computer science, a “high-level overview” of these features: Programming will

be reading/writing as 1. Gilles Deleuze’s acrobatic invention of shapes; 2. Jacques Derrida’s

delicate and tricky figures of speech or plays on the materiality of signs; 3. Michel Foucault’s

discursive, addictive technologies of self. Throughout all three chapters, this programming is

reading-writing as the creation and manipulation of forms. Form, for us, has two primary senses:

1. dynamic shapes or moving figures, topology, morphology, diagram; 2. language signs and

syntax, the support (two aspects which will be discussed in the first and second chapters,

respectively). In summary, programming, here, emerges as a figurative, diagrammatic activity

(Deleuze, Althusser), infected by the materiality of its semiotic system, and irremediably given to

error (Derrida). Its processual workflow hooks the programmer into a conversation with their

machine, creating an addictive discursive feedback loop. Creating this cybernetic system is a

mode of subjectivation in the sense of a technology of the self (Foucault), or fold (Deleuze).

 It is less that I am applying or mapping, say, Derrida or Foucault’s theories of writing in

general onto the program, and more that I compare programming to their own writing and

reading. We are speaking, therefore, more specifically, on the reading of the critic or the writing

of the philosopher. I am interested in tracing the isomorphisms between these two activities––

programming and philosophy or critique––despite and because they are often assigned such

opposite polarities. This is perhaps most easily identifiable in Heidegger’s technophobia, but also

for Foucault, Derrida, and Deleuze, the program or code is often a figure for that which, because

mechanical, is antithetical to the openness, otherness, or outside-ness of Thinking. So I write

from slightly outside both computer science and critique, introducing these foreign discourses to

each other in the vague interest of opening out towards “the possibility of a difference, of a

mutation, of a revolution in the propriety of symbolic systems” of one or the other, as Barthes

does by inventing a semiotics of the Orient for the Occidental reader. Computer code affords me 4

a “situation of writing” through which to think thinking and the technical together, to once again

rearrange these terms in relation to one another, in a way that causes “a certain disturbance of the

 Barthes, Empire, 3-4. 4

2

person” to occur. It is such a disturbance via the “flashes” of technology that constitutes the 5

cybernetic mode of subjectivation of the programmer, which, in turn is what makes programming

and philosophy disturbingly similar. In a sense, this comparison is just another way to write in

the spirit of originary technicity or prostheticity, a tradition that animates every chapter but to

which we will return to explicitly only in the conclusion.

A specification of scale: What is programming?

Digital media comprise a heterogeneous multiplicity of technical and semiotic systems. This is a

function of the extraordinary technical complexity of the digital computer as a “writing machine”

and the ensuing diversity of its practical applications. The attempt to provide a total account of

an actually existing practice––programming––on this “universal” machine is impossible. I will

attempt to specify what sort of “programming” will be discussed here, first by a partial list of

exclusions.

 I will not emphasize machine learning, the rapidly developing branch of computer

science concerned with enabling computers to learn. The increased economic and disciplinary

relevance of this sub-field of artificial intelligence has prompted widespread discussions and

anxieties over its ethical and philosophical implications, the nature of intelligence, and what it

means to be alive at all. The field of software studies has, similarly, seen a turn away from the

critical concerns of traditional Anglophone media theory (representation, ideology) and towards

more metaphysical considerations (the ontological status and “experience” of the computing

machine itself). Although I will draw on some of these authors, including Beatrice Fazi,

Wolfgang Ernst, and Luciana Parisi, my analysis engages primarily with (older) texts by authors

interested in the signifying strategies of new media: Lev Manovich, N. Katherine Hayles, and

Wendy Hui Kyong Chun. Given my interest in programming as a creative practice, the

impenetrable deep neural nets of machine learning, and related problems of cellular automata

and emergent synthetic life-forms, are less relevant in that their specificity lies in that which is

not programmed by the human. Nor will I address programming at the scale of distributed

systems––the task of coordinating the communication of a network of machines crucial to the

 Barthes, Empire, 4. 5

3

globalized economy. Alexander Galloway’s Protocol, on network transfer protocols, is one

example of a work which engages with the technologies that make the Web “world wide.” Nor

am I studying the labor practice of software engineering. Former engineer Federica Frabetti, for

instance, has written on the complex discursive networks that structure the contemporary

software industry in her book Software Theory.

 This is programming, therefore, at a slight remove from both practical applications and

the theoretical discipline of computer science. My examples are fairly academic exercises: the

implementation of classic data structures and algorithms. The programs I examine can be run on

a single, non-networked machine. This narrowing of scope or limiting of scale, which still allows

for an infinitude of kinds of programs with different ends, is necessary because of the complexity

of the technical processes involved. It is also a function of my mostly academic personal

background in programming. What I hope to address is the lowest common denominator of all

applications of modern computer science: the writing of alphanumeric symbols which will be

interpreted by a machine.

 In 2020, this “writing” is typically done in high-level programming languages: the

recognizably Anglophone languages in which the vast majority of code written by humans is

produced. As case studies, I will take examples of programs written in the common high-level

languages Java and Python. These are “high-level” in that they require many translations into 6

other layers of language before being interpretable by the machine itself. These “compilations”

and “interpretations” are automated processes; running any high-level program, therefore,

initiates multiple invisible readings and writings of yet other programs, in other languages, by

programs themselves. Although, today, this code is rarely written by humans, I will also discuss

such lower levels of technicity because the account I am working towards is that effective

programming requires understanding and (indirect) figuration of multiple scales of technicity

simultaneously. Programming writes far more than just the Java or Python file itself.

 Those familiar with different programming paradigms will notice that I emphasize object-oriented 6

design and languages. This is primarily because OOP’s concepts seem more easily graspable by a lay
audience. I believe the same analysis could be constructed if one were to privilege, say, functional
programming.

4

 A note on terms and font: This has been written with the intention that a reader with no

background in computer science could understand the crucial points of the argument, if not all of

their details. For the sake of clarity, in order to call attention to their status as technical

nomenclature, general computer science terms are printed in gray bold face the first time they

appear in a section of text. Some terms may not be completely explained when first introduced,

but will be elaborated further on when doing so becomes relevant. References to specific

programming language constructs, or blocks of code, are printed in monospace.

5

CHAPTER 1. SCALE AND DIAGRAM

Our method … aims to produce a system of thoughts that bridges different orders of
magnitude through developing a theory of relations. Philosophical concepts can be seen
as inventions that try to overcome the incompatibilities or even indifferences between
two orders. Hence philosophy remains technical in this project.
- Yuk Hui, On the Existence of Digital Objects. 7

The computer writes, and reads, in many different virtual and material locations, and in many

different “languages,” almost instantaneously. The coexistence of these semiotic systems, this

heterogeneity of digital and analog signifiers that includes graphical images, alphanumeric

symbols, and voltage differences, perhaps best distinguishes the new media object from older

technologies. Arguments like Friedrich Kittler’s oft-cited claim that “there is no software”

because, ultimately, all code functions only as voltage differences in the hardware circuits of the

machine, are, for us, beside the point. We will see, rather, that the specificity of programming 8

lies in the activity of creating relations or mediations between these different systems, which,

like Yuk Hui, I conceptualize as operating at different levels or scales. This should not be

understood exclusively or explicitly in the spatial sense of object x being “smaller,” “lower,” or

“inside” another object y (although all three of these metaphors will be used), but to indicate the

coexistence of multiple “orders” of what Hui (following Gilbert Simondon and Gaston

Bachelard) calls “technical reality.” Scalar levels are therefore understood loosely as different

“dimensions.” Hence, “depth” and “inside” ought to be seen with quotation marks. When I have

recourse to language such as “high-level” (to describe “visible” semiotic systems with which

human programmers interface directly) and “low-level” (technical, semiotic operations carried

out by the machine without direct human intervention), it is because these are the metaphors

through which computer science spatializes and hierarchizes the operations of its technical

object.

 Yuk Hui, On the Existence of Digital Objects, (Minneapolis: University of Minnesota Press, 2016), 7

30-31.
 His argument is akin to claiming that “there are no apples” because, in the final analysis, apples can 8

be reduced to atoms. Friedrich Kittler, “There is No Software,” CTheory (1995), accessed March 31,
2020, www.ctheory.net/articles.aspx?id=74.

6

http://www.ctheory.net/articles.aspx?id=74

 The aim of this chapter is not to provide a definitive description of the set of forms a

program takes or operates on. Rather, by engaging the work of several new media theorists as

well as the figurative language and visual metaphors computer scientists use to do their work, I

wish to illustrate the heterogeneity of forms that structure computer science and the discourses

around it in order to highlight the importance of formal thinking to programming. I take Lev

Manovich’s figures of the “fractal” and the “binary” as a starting point, expanding and

complicating his argument throughout the chapter. Here, I understand mediations between

abstract/concrete and time/space––which Hui might characterize as relations that bridge different

orders of technicity––as problems of figuration. Although Hui’s work does not bear on reading

and writing, I cite his description of his own method above in order to gesture towards another

possible path that one might take in order to compare programming and philosophy: in terms of

relationality, and Simondon and Bachelard’s work on orders of magnitude. Instead, at the end of

the chapter, we will begin our comparison of programming to reading, writing, and critique via a

discussion of the figural operations Althusser performs in the opening essay of Reading Capital,

and Deleuze’s description of Foucault’s discursive diagrams.

Programming as figuration

LAYERS, PARTS AND WHOLES

In accordance with the high-level/low-level vocabulary of computer science, most attempts at a

definition of new media objects by media theorists gesture towards some idea of depth, and the

fact of mediation, or translation, between layers. As N. Katherine Hayles wrote in 2004, “print is

flat, code is deep.” This tendency is exemplified by Benjamin Bratton’s 2015 book The Stack, in 9

which the eponymous computational data structure is the privileged model not only of network

technologies, but our geophysical and political reality, which Bratton organizes vertically in the

stratified yet “interdependent layers” of Earth, Cloud, City, Address, Interface, User. 10

 Whether this mischaracterizes the complex practices of citation and context that might give print a 9

certain “depth” is another matter. N. Katherine Hayles, “Print is Flat, Code is Deep: On the
Importance of Media-Specific Analysis,” Poetics Today (vol. 25:1): 67-90.

 Benjamin Bratton, The Stack: On Software and Sovereignty, (Cambridge: MIT Press, 2015), 11. 10

7

 This particular formal quality is also emphasized in one of the earliest, canonical texts of

software studies: Manovich’s The Language of New Media. In what he calls a “textbook” for the

study of “new media objects” (which I will abbreviate here as “NMOs”), Manovich hopes to

identify their “emergent conventions, recurrent design patterns, and key forms.” His media are 11

new in that they are described in terms of their similarities to and differences from older media,

primarily cinema––differences which derive from their technical functioning. While Manovich

privileges objects more traditionally recognizable as “media,” like digital images or video, his

definition allows room for software or even code; the five general principles he derives ought to

“hold true across all media types, all forms of organization, and all scales.” These principles 12

build on each other, as in axiomatic logic. Manovich’s structural, “bottom-up” analysis therefore

mirrors the hierarchical composition of NMOs themselves: Just as a program “undergoes a series

of translations” from high-level programming language to executable code to binary code, The

Language of New Media progresses from binary code to computer program in order to arrive at a

theory of the organizing logic of NMOs. 13

 Manovich gives this hierarchy or verticality two distinct, even contradictory, shapes. The

first is that of the fractal: “Just as a fractal has the same structure on different scales, a new

media object has the same modular structure throughout.” NMOs are discrete objects which 14

can be combined into “larger-scale” objects, without the individual elements losing their separate

identities. In a video-editing software, for example, one might collate a series of shorter video

clips to form a longer video of the same file format. If NMOs comprise a multiplicity of layers,

this is in the strict sense of “comprise”––a strangely bidirectional verb because it has two

meanings which are, if not opposites, then inverses: both “to constitute, to make up” and “to

consist of, to be made up of.” This quality perfectly captures the recurrent, synecdochic relations

of parts to wholes Manovich expresses with the fractal.

 It is in this sense that he emphasizes a structural “language,” rather than describing their 11

“aesthetics” or “poetics.” Lev Manovich, The Language of New Media (Cambridge: MIT Press,
2001), 11-12.

 “Software” is typically understood as a consumer-facing graphical user interface, whereas “code” 12

is a text written by programmers (although, today, the line between consumer and producer is
increasingly blurred, and, as we will see, all code is also an interface). Ibid., 14.

 Manovich, Language, 11. For Manovich, “logic” is quasi-synonymous with “language.” 13

 Ibid., 30.14

8

 Fractalization is produced by the programming technique of modularization, in which a

problem is divided into a set of discrete sub-problems. This technique is to Silicon Valley what

the assembly line was to Ford; its innovation enabled the emergence of the software industry by

allowing multiple engineers to work on the same project without requiring interaction with the

implementation details of their colleagues’ work. As Wendy Chun emphasizes, the method is a

way of hiding (or, as she argues, mystifying) the interior workings of different parts of the

program. Modularization is perhaps best illustrated by object-oriented programming (OOP), 15

the widely popular programming style in which a program’s functionality is distributed across

discrete objects which are put into communication with one another. One object can contain

many other objects; each individual element is thus isomorphic with the whole. While many

programs––particularly at the higher levels Manovich discusses––may exhibit such a fractal-like

isomorphism, a closer examination of OOP, as well as lower levels of technicity, will allow us to

show that heteromorphism between parts and wholes is an equally salient feature of

programming.

ASYMMETRIC BINARIES, HETEROMORPHISM

The other figure that Manovich emphasizes might be called the “asymmetric binary.” Rather than

a multiplicity of synecdochic or fractalized layers, this is a dual opposition between contrasting

terms in which one precedes the other. For Manovich, these two terms might be, for example:

culture/computer, surface/depth, immersion/information, form/content, narrative/database, or

action/representation. The two terms are related by “transcoding”: a type of transformation that 16

refers both to the technical process of converting numerical representations into media (image,

video, etc) within the machine, and the higher-level process in which technology “reformats,” or

influences, human culture. In the logic of transcoding, one form is transposed into its “opposite”

on a higher scale. This dynamic of transcoding between asymmetric binaries recurs under many

names and on many different levels of Manovich’s analysis.

 Wendy Hui Kyong Chun, “On Software, Or the Persistence of Visual Knowledge,” Grey Room 15

(vol. 18: Winter 2004): 38.
 One might note that these oppositions follow a Marxist figure of base –> structure, in which the 16

“deep” technical term determines the “superficial” cultural layer. Manovich, Language., 229, 65,
216.

9

 A closer examination of the dualism data/algorithm, which Manovich mentions only

briefly, will allow us to highlight what Manovich’s theory of transcoding addresses, if not

entirely develops: that part of the specificity of computers is their folding together––though not

dissolving––of such binary categories. Manovich defines data and algorithm as follows:

Computer programming encapsulates the world according to its own logic. The world is
reduced to two kinds of software objects that are complementary to each other––data
structures and algorithms. Any process or task is reduced to an algorithm, a final
sequence of simple operations that a computer can execute to accomplish a given task.
And any object in the world––be it a population of a city, or the weather over the course
of a century, or a chair, or a human brain––is modeled as a data structure, that is, data
organized in a particular way for efficient search and retrieval. Examples of data
structures are arrays, linked lists, and graphs. Algorithms and data structures have a
symbiotic relationship. The more complex the data structure of a computer program, the
simpler the algorithm needs to be, and vice versa. 17

The categories of data and algorithm are particularly interesting because they play out other

divisions with recognizable philosophical resonances: such as between object and process, form

and content. Following the pattern of transcoding, Manovich often describes the data structure as

the underlying figure that “supports” the algorithm. But, as we will see, when considering the

totality of technical scales within the digital object, there is not merely one, but many thresholds

of such reversals; rather than trying to establish one of the two as causally or temporally prior,

we will instead emphasize the process of transformation of forms as that which defines

programming. The figuration of one form as its opposite on another scale is also a

metamorphosis, a transformation that introduces discontinuities and heteromorphisms into

Manovich’s figure of the fractal which is identical with itself on every scale.

 In the definition above, “algorithm” appears rather vaguely as “process”––any dynamic

in-between that transforms data inputs into data outputs. Manovich also seems to use

“data” (typically considered the “raw material” on which the program operates) and “data

structure” (typically understood as the manner in which the former is represented)

synonymously. This distinction is thus one of process-in-time vs. shape-in-space. On certain

 Manovich, Language, 223.17

10

levels, programs do indeed differentiate between processes and objects. But the “symbiotic

relationship” Manovich describes, in which the complexity of a data structure and an algorithm

are inversely proportional, exists precisely because the distinction between the two is purely one

of convenience––or, rather, a function of scale.

 For example, a programmer might want to use a priority queue––essentially a list sorted

in accordance with some comparative function––to structure his data. The high-level language

Java offers a class, called PriorityQueue, in its library. The PriorityQueue class allows the 18

programmer to add items to a list which are sorted automatically, without him needing to invoke

the command list.sort(), or even implementing the sorting function from scratch. Although Java

would describe an instance of a PriorityQueue as an object, the organization of this data structure

is facilitated by an algorithm that is built into it (a particular sorting function, for example). What

are, in a normal list, two separate concepts (the object of list, and the process of sorting it), are, in

PriorityQueue, combined as a single object. In an object-oriented language like Java, this is the

basic pattern by which all programming proceeds: when the programmer writes a program, she

does so by creating classes of objects to which correspond both noun-like attributes (for

example, name), and verb-like methods (like sort). Within the scope of a function definition,

moreover, she might define other objects as well as other functions. In this sense, it is not only

that object becomes process, but that process also becomes object, which might become process

again, and so on.

 The distinction between object and process is, therefore, merely a conceptual tool that

creates different levels of abstraction. Java’s PriorityQueue data structure is a shorthand for what,

in another language, would need to be programmed by hand as a complex amalgamation of

functions and other data structures. In this sense a data structure is itself a program at another

scale. But this relationship is not that of the isomorphic fractal; the parts (in this case, methods

and attributes) that make up the whole of a Java object are heteromorphic with each other and

thus with the object they compose.

 A class can be imagined as a generic template for making specific data objects. A library is a kind 18

of interface of ready-made data structures and functions that a programmer can use––in other words,
a collection of classes. These might be included as standard linguistic features of a language, or
require being “imported” or added from an external source.

11

 The mediations through which the semiotic figures––lists, integers, functions––involved

in programming pass are therefore not only “translations,” but, literally, transformations across

scales. This is also true in the case of analog and digital signs. As N. Katherine Hayles

emphasizes in “Print is Flat, Code is Deep: The Importance of Media-Specific Analysis,” what

we call digital computers in fact function via both analog and digital representations. “At the

most basic level of the computer are electronic polarities, which are related to the bit stream,” the

sequence of discrete binary digits, “through the analogue correspondence of morphological

resemblance.” Analog communication occurs via a similarity of continuous shapes, whereas 19

digital communication relies on an arbitrary system of discrete signs. Human language, from the

perspective of classic linguistics, falls into the latter category. In a computer, the zeros and ones

of binary data are transcoded into increasingly complex discrete signs, including hexadecimal

code, assembly commands and high-level keywords. The highest level of the graphic user

interface, however, functions once more via analog resemblance in the form of interface icons

that imitate the morphology of items like folders or film cameras. Hayles’s computer is a layer-

cake, an “Oreo cookie-like structure with an analogue bottom, a frothy digital middle, and an

analogue top.” Not only are the forms of the computer variously discrete (digital) or continuous 20

(analog) at different scales, but the manner in which mediation between these layers occurs, the

process by which information is translated, itself varies between linguistic transcoding and

morphological resemblance.

 I draw on Hayles’s observations to demonstrate the heterogeneity of a computer’s

semiotic systems, as well as to give another example of a layer-model of new media that takes a

different form from Manovich’s either bi-partite or self-identical one. While high-level

programming does not typically necessitate awareness of either analog end of the physical

computer, the transfiguration of an abstract, figurative data structure or algorithm into a discrete

sequence of Java commands during implementation is also a shift from information conveyed via

analog resemblance to digital encoding. In other words, one transforms the morphological,

analog figure of a data structure, like a list, into language, which is a digital representational

 Hayles, “Print,” 75.19

 Ibid.20

12

system. As we will see, this shift from image to implementation is also one from abstract to

concrete.

ABSTRACTION (GENUS/SPECIES)

We have described the manner in which a program’s functionality is split and distributed across

the axis of space versus time. Another dimension we might consider is abstraction, and the

oppositions ideal versus material, or form versus content. There is a distinction between data

structures and algorithms as abstract concepts––“linked list,” “merge-sort”––and their

implementation in a particular language, as well as between their implementation and their

instantiation with particular data. For example, the priority queue is a generic or abstract data

structure whose defining feature is that it is sorted (or prioritized), but Java and Python’s priority

queue classes differ both syntactically, functionally, and in their implementation “under the

hood.” For example, on the most superficial level: Python’s more primitive version of the Java 21

PriorityQueue class is called heapq. Not only do the signs or operations through which one

manipulates a priority queue differ between Java and Python (they are, after all, different

“languages”), but the algorithm through which the class is realized (or implemented) in the

lower-level code that “underlies” Java or Python might be different as well. Instantiation,

conversely, designates the process through which a given language’s PriorityQueue class is used to

contain actual data. For example, within a Java program, one concrete instance of the general

class PriorityQueue is created as, say, myAlphabetizedList = [“Amelia”, “Bella”]. The higher levels of

programming, especially in object-oriented languages, involve a potentially infinite layering of

such abstractions.

 In object-oriented programming (OOP), the classes of objects you create in order to

encapsulate functionality are essentially templates or patterns that are used to create multiple

instances of one object. One class can therefore be re-used within the same program, as well as

across different projects. A concrete class, moreover, can inherit certain features from a

potentially endless chain of other concrete classes, as well abstract classes––classes which can

 They may, for instance, use different sorting algorithms. We will return to differences between 21

programming languages in Chapter 2.

13

not be instantiated. These relationships of abstract/concrete, mediated by the concept of

inheritance, essentially follow the model of genus/species taxonomy inaugurated by Linnaeus.

For this reason, OOP is often taught via zoologically-themed exercises: Mammal is an abstract

class for the concrete class Deer, which can be instantiated as bambi. Classes can also implement

interfaces, which are different from abstract classes in that they merely specify certain methods

which must be present in a class, without providing an implementation for them.

 Figure 1, on the following page, shows a diagram of Java’s built-in PriorityQueue class.

This is a type of schema through which a programmer might conceptualize their own Mammal or

Deer classes. The table in Figure 2 shows the methods (the functionality) that PriorityQueue

inherits from its superclasses, among them java.lang.Object, the highest-level class from which

all Java classes inherit. The <E> with which PriorityQueue is annotated indicates that a particular

instantiation of the class must be given a certain type, such as PriorityQueue<String> or

PriorityQueue<Deer>, or even PriorityQueue<PriorityQueue<String>>, specifying the type of object

that the queue will contain. The place-holder parameter E (element) is thus another notation of

abstraction. As in our previous discussion of objects and processes, there are multiple

stratifications on which what is “abstract” on one level becomes “concrete” on another, as well

as lateral relations between forms of abstraction.

 We can also identify the importance of such layers of abstraction beyond the scope of

OOP –– in the implementation, for example, of algorithms or data structures themselves. Figure

3 shows high-level pseudocode for the minimax algorithm, an algorithm used in game theory to

determine the optimal move for a player in a two-player zero-sum game such as tic-tac-toe. An

algorithm is usually considered independently of the particular data structure one might use to

implement it. In this case, the diagram in Figure 4 visualizes an example minimax game

implemented as a tree-search problem. 22

 Minimax is a fairly simple algorithm which dictates that you assume that your opponent, also 22

playing via the rules of minimax, will take the move which is least advantageous to you. “Games,”
Massey University of New Zealand, accessed March 31, 2020, https://www.massey.ac.nz/~mjjohnso/
notes/59302/l05.html.

14

https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html

15

FIGURE 1

Java PriorityQueue class diagram. (“Priority
Queue Java,” JournalDev, accessed April 17,
2020, https://www.journaldev.com/16254/
priority-queue-java.)

FIGURE 2

Java PriorityQueue class inheritances. (Screenshot
of “Priority Queue (Java Platform SE 7).” Oracle.
2018, accessed March 31, 2020, https://
docs.oracle.com/javase/7/docs/api/java/util/
PriorityQueue.html.)

FIGURE 3

Minimax pseudocode. (“Games,” Massey
University of New Zealand, accessed March 31,
2020, https://www.massey.ac.nz/~mjjohnso/notes/
59302/l05.html.)

FIGURE 4

Minimax tree diagram. (Ibid.)

https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.journaldev.com/16254/priority-queue-java
https://www.journaldev.com/16254/priority-queue-java
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://www.journaldev.com/16254/priority-queue-java
https://www.journaldev.com/16254/priority-queue-java
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html

 In implementing the minimax algorithm, a programmer might rely on either or both of

these representational tools. Pseudocode is an informal schema, expressed in some more or less

formalized version of human language, for how one might structure one’s implementation,

independently of any specific programming language––though different pseudocode for a

specific algorithm might be more or less suited to your language of choice. The diagram in

Figure 4, on the other hand, combines morphological representation with concrete values to

illustrate both the form, or data structure, an implementation might take––here, a “tree”––and the

manner in which values will propagate up the tree in accordance with the minimax algorithm.

These two schemas are representations “above” the level of written code that nevertheless

constitute part of the activity that I call programming. Implementation of minimax requires both

“translating” pseudocode into, say, Python, as well as transcoding the continuous shape of the

tree into discrete language.

 While one might be tempted to characterize programming’s layers as increasing in

abstraction the further they move from the material reality of the machine, the tree diagram

complicates this slightly. As an example, it is a kind of abstract template that allows the

programmer to write a general implementation, which is able to function as such precisely

because it is more specific or concrete than an actual implementation. The diagram, among other

things, is therefore an abstract figure which nevertheless combines ideal and material,

morphological and digital codes.

 The navigation of the categories of abstract and concrete, form and content, is thus a key

activity of computer programming. In his study of markup languages in On the Existence of

Digital Objects, Yuk Hui, similarly, observes the importance of the form/matter distinction, 23

arguing that computing is predicated on classically Aristotelian hylomorphism. He opposes this

to a Simondonian or Heideggerian understanding of technology in which matter gives rise to

form; a good sculptor, for example, allows form to arise from the material at hand. Hui claims

that this does not apply to computing, for “in the age of mass production… it is no longer a

 Markup languages like HTML and XML, are static, purely “descriptive” metadata schemes. They 23

merely dictate the form of a digital object like a webpage; unlike Java, they can not manipulate
objects or initiate processes.

16

question of human skill, but rather of the machine standards that create such forms.” Form, 24

therefore, is superior to matter (data) in the digital object. Hui’s analysis operates on the level of

metadata schemes as the creators of digital objects, and for the most part elides their human

origin. But programming, too, is an artisanal skill in the manner Hui describes; a good

programmer chooses the data structure and/or algorithm most suited to the problem or data set at

hand. As we will see, material constraints such as memory and processing power, which change

depending on the hardware in use, are also a crucial consideration in any non-trivial program.

THE WORK OF SCALING

This brings us to a closer examination of the relation of the programmer to the figures and

transformations across levels we have traced. I would argue, contra Hui, that the program is not

incompatible with Simondon’s critique of hylomorphism and his theory of technicity as “taking

of form.” In On the Mode of Existence of Technical Objects, Simondon relates the Aristotelian

division between form and matter to the worker’s alienation from both his labor and the technical

world. In the typical situation of labor, in which an overseer who is removed from the material

object commands the worker’s manipulation of material, “the worker must have his eyes fixed on

these two terms [form and matter], which he must bring closer together.” Therefore:

the attention is given to form and matter, not to the process of taking form as operation.
The hylomorphic schema is thus a couple in which the two terms are clear and the
relation obscure. Under this particular aspect the hylomorphic schema represents the
transposition into philosophical thought of the technical operation reduced to work, and
taken as the genesis of beings. 25

“Work” entails a lack of understanding of the middle between form and matter, the process by

which they are unified, the mediation which constitutes “the active center of the technical

operation that remains veiled” in alienation. One might, therefore, ask: Is programming true

technical knowledge, in which man “[represents] to himself the way of functioning that coincides

with the technical operation” that is taking-of-form, or is it mystified work? 26

 Hui, Existence, 61.24

 Gilbert Simondon, On the Mode of Existence of Technical Objects, trans. Cecile Malaspina and 25

John Rogove (Minneapolis: University of Minnesota Press, 2016), 248-249.
 Ibid., 249. 26

17

 Here we return to our previous discussion of the division between process and object,

again taking the PriorityQueue as our example. While the PriorityQueue appears as a static

structure to which elements are added, it has a built-in sorting algorithm that maintains the order

that gives the data structure its specificity. Thus, on a lower level, this organization or form is the

result of a process that is permanently active. An instance of a data structure is less the static

output of a one-time call to a function, an architecture that, once erected, is stable, than a

continual taking-of-shape: each time an element is added to a queue, linked list, or graph, the

algorithms which define its structure are called upon to maintain its organization.

 Wendy Chun’s critique of software as ideological rests on a similar argument that links

the question of object and process to systems of visibility and a logocentric understanding of the

performative power of language. The popular notion of digital technologies as transparent is

possible only by making invisible the process of computation: the fact that computers “generate

text and images rather than merely represent or reproduce what exists elsewhere.” When a user 27

opens a file, they ignore that the image they see has been programmatically generated, and that

what appears as a static form is actually being continually produced by light pulses within the

screen. Both high-level languages and software more generally allow the programmer or user 28

to forget the material functioning of the computer, and imagine that their commands magically or

fetishistically produce effects without mediation through the machine. Chun identifies this

ideology, in which word is transparently converted into deed and human intentionality is

transmitted seamlessly via language, with Derrida’s concept of logocentrism. Here, code is a law

that is executed automatically.

 This move is coextensive with the mode of abstraction enabled by high-level languages,

which spatialize (i.e., object-ify) what are really, on a lower level, linear, time-based machine

processes: “Software as logos turns program into noun––it turns process in time into process in

 Chun, “Software,” 27. Whether or not it is true that computers are commonly viewed as 27

“transparent” is debatable but irrelevant here. Arguably, in 2019, anxieties over the “black box” of
machine learning equal those over surveillance and systems of hypervisibility in popular discourse.

 Again, “software” or “interface” typically refers to a product for use by the non-coding public. But 28

high-level languages (as well as any “layer” in our model of programming) are also interfaces in that
they are mediations between human user and a lower level of machine technicity.

18

(text) space.” The level of technicity Chun privileges in her analysis is assembly code: 29

programs written in a low-level language that can be run only on a specific processor

architecture (unlike Java programs, which can be run on any machine). Assembly code, which

consists of a series of commands to move data into different memory addresses, was once the

only way for computer scientists to program their machines. Today, very little programming is

done in assembly languages; high-level languages automatically compile programs into assembly

and then into machine code, without intervention by the programmer. In comparison with the 30

recognizably Anglophone high-level languages, assembly code is only barely legible as derived

from human language, or intended for human use.

 The high-level language Python is distinguished from the assembly language x86-64 by a

formal syntax that allows a non-linear structuring of the flow of control in the program. The top

line of code in Figure 5 (following page) initiates a while loop: a series of steps that is performed

again and again until the starting conditions are no longer met. The lines below if are executed

only on the condition that the start_list queue is empty; otherwise, the lines below else are

executed. The for keyword initiates a process in which a series of operations are performed for

each element in the list_of_items. A for-loop is not only a handy automation for what one could

write out for each element in the list (given that the programmer knows its size), it is an

abstraction of a linear sequence into something like a concept of a movement: In this case, “add

each item to a list.” It is a linguistic shortcut (what Chun calls a metonymic “explosion of

instructions”), as well as a concept or figure tracing a movement or process of transformation. 31

 Wendy Hui Kyong Chun, Programmed Visions: Software and Memory (Cambridge, MA: MIT 29

Press, 2011), 19.
 Though these compilers, or “interpreters,” are, of course, themselves programs written by a 30

programming language designer.
 Chun, Programmed, 41.31

19

20

FIGURE 5

Flows of control: example of while, if, and for in Python.

FIGURE 6

Diagram showing flow of control in a Java function to compute the
factorial of a number n. (“How to perform recursion operation in Java,”
CodingSec, accessed March 20, 2020, https://codingsec.net/2016/09/
perform-recursion-operation-java/.)

https://codingsec.net/2016/09/perform-recursion-operation-java/
https://codingsec.net/2016/09/perform-recursion-operation-java/
https://codingsec.net/2016/09/perform-recursion-operation-java/
https://codingsec.net/2016/09/perform-recursion-operation-java/

 In Wolfgang Ernst’s terms, programming on a high level is chronopoetical in that it

involves the creation and manipulation of complex figures of time and causality. For- and while-

loops are the two most elementary examples of time figures instantiated by the programmer:

iterative structures that perform the same sequence a certain number of times or until a specified

condition is met. Recursive functions take a similar but more complex shape, in which the

return value of a function is a call to the same function. Figure 6 (previous page) shows a short,

recursive Java program that computes the factorial of a number: the mathematical function n =

n*(n-1)*(n-2)*…*1. The diagram shows the flow of control in a call to the function with the input

n=3. The diagram’s gray arrows, which go both up and down on the same line of code,

demonstrate the unique temporality of recursion, in which one must represent to oneself the

program’s linear progression in time, which enables a gradual transformation of the input data,

as a cyclical repetition of the same function. In this way, the temporality of programming is

inextricable from the transformation of data. The minimax algorithm implemented as a search

tree considered above is another tempo-spatial figure: an oscillation between two symmetrical

functions, max and min, across multiple levels of a branching tree. Algorithms are temporal

figures for the taking-of-form of structured data. As written documents, programs are linear,

discretized representations of continuous, tempo-spatial morphologies.

 While any of these programs could be written in x86-64, the strictly linear control flow of

assembly language would make this exceptionally tedious. Moreover, the programmer’s

engagement with the data and operations at hand would be on a micro-scale of materiality––

adding bits together, moving values from one slot in memory to another––to which it is difficult

for most programmers to adapt. It is this loss of material closeness to the machine that Chun

mourns. The abstractions that a language like Java enables increase the power of programmers at

the expense of their knowledge of the functioning of the machine.

 In the case of high-level versus assembly code, I would complicate Chun’s argument that

one is purely spatial, and the other purely processual. Assembly code relies on a division

between object-like data and memory addresses, and the processual commands used to move

them. Similarly, the abstractions enabled by high-level languages are not only spatial, but also

temporal figures. But the question is less whether or not I agree with Chun’s assertion that, from

21

the perspective of their technical reality, programs are processes rather than objects, and that, to a

certain extent, high-level languages obscure this fact as a function of their representational

systems. It is clear that the textual representation of a program in Java is necessarily static,

whereas programs in action are dynamic linear processes not immediately visible to a human

observer. But for us, the question is not whether any specific level of technicity is “more spatial”

or “more temporal,” nor whether certain features grant that level of technicity critical primacy in

terms of theorizing digital technology as a whole. It is rather a question of whether one conceives

of programming as restricted purely to one level, or as something that, in fact, traverses multiple

levels. If it is truly “process” or movement that ought to be privileged in a discussion of

programming, it is not because any given lower level of technicity is more properly described as

dynamic rather than static. Rather, the “process” of programming is the movement or mediation

between such layers of representation: in Manovich’s terms, transcoding, in Simondon’s, the

process of taking form as operation.

 While Chun develops an insightful analysis of the gendered history of computing and the

human labor relations that would become technically inscribed in computer architecture, it is

difficult to understand the ultimate import of her criticism of high-level languages as abstract.

The “paradox” she identifies, in which high-level languages reduce “knowledge” (of detail) but

increase power, is common to thinking. It seems trivially true that theoretical or conceptual work

involves abstraction and hence reduction, generalization, or forgetting of certain material

specificities, nuances, or implementation details. The ideological nature of such thinking lies 32

not in the (necessary) use of such abstractions, but in using them as if they were not

abstractions. This is the crucial point which Chun does not develop sufficiently. In order to 33

argue that programming not only can, but must, as part of its specificity, mediate between

abstractions and visualize the hidden materiality of the machine, we will turn to Wolfgang

Ernst’s theory of technology as creating temporalities.

 Kieran Healy, for example, observes that appeals to greater “nuance” in sociology prohibit the 32

discipline’s analytical power. Kieran Healy, “Fuck Nuance,” Sociological Theory (vol. 35:2),
118-127.

 This is Chun’s own definition of ideology, which she takes from Žižek’s understanding of 33

commodity fetishism as deriving its power from its use in practice, rather than its mystification in
theory. Chun, Programmed, 52.

22

ECONOMIES OF TIME AND SPACE

Even in the age of highly abstract programming languages, effective, efficient programming is

characterized by consideration of lower-level machine processes. Wolfgang Ernst illustrates this

with his concept of electronic media as time-critical machines, technologies “in which minimal

time processes represent a critical and thus decisive criterion for medial operativity.” Ernst’s 34

time critique operates at the sub-microscopic level of technicity, examining the time-based

events of binary circuits and the clock pulses of the system clock to demonstrate their criticality

to the functioning of the individual computer, as well as to its networking with other machines. 35

Digital media are not only semiotic machines, but time machines––indeed, on the microscopic

level, even signals are time functions––that are chronopoetical in that they “generate original

figures of temporal processuality” outside of the typical human understanding of time, as we

have already examined in our discussion of recursion and other algorithms. 36

 While the high-level programming in which we are interested does not necessitate

representation––in the sense of representing-to-oneself, imagining, or the German vorstellen, vor

sich stellen––of the operation of logical circuits or other micro-temporal processes, most non-

trivial programming tasks engage with the time-critical nature of computation. Programs are

static representations of processes that, once written, are run. When optimizing for speed, the

run-time or time-complexity of a program is a critical consideration, just as, when optimizing for

space, the space-complexity is critical. Time and space are the resources that must be optimized

in the economy of programming. The relationship between the two is often inversely

proportional; thus, optimization techniques must be tailored to the problem at hand. A truism of

software engineering is that “programmer time is more valuable than processor time”: in the

computing economy, the labor-time it would take for a programmer to fully optimize a problem

is more valuable than a company’s technical resources, especially given the rapid hardware

advancements in processor power and memory. But if we are to theorize the specificity of

programming as writing in relation to the machine, time-space complexity must form a key part

of our analysis. While a programmer could solve a problem any number of ways, and there is not

 Wolfgang Ernst, Chronopoetics, trans. Anthony Enns (London: Rowman and Littlefield, 2016), 10. 34

Ibid., 63. 35

Ibid., vii. 36

23

always a “best-practice” solution, ignoring the question of efficiency erases the entire

disciplinary thrust of computer science––it makes programming a purely aesthetic rather than a

technical exercise.

 Time- and space-complexity are usually expressed in Big-O notation, which describes

the behavior of a function when the argument tends towards a particular value. An algorithm’s

time- and space-complexity is given a Big-O category as a function of the size of the data given

to it as an input. Note that the fact that an algorithm’s time complexity, arguably its most

important feature, is defined as a function of its input, provides another example for the co-

articulation of temporal and spatial figures in programming. For sorting algorithms, it makes

sense to consider time-complexity from the perspective of best-case and worst-case input

scenarios––the worst-case scenario being, for example, that the elements of the original input

array are ordered in reverse order. An algorithm has a space-complexity as well as a time-

complexity because, in the case of array-sorting, it must store the array data structure as well as

any intermediate arrays or other values used during the process of sorting.

 In order to sort an array of objects in Java, for example, one might write at least ten

different sorting algorithms, all of which have different best-case, worst-case, and average-case

time and space complexities. In many introductory computer science classes, students implement

several if not all of these algorithms themselves in order to gain an intuition for time and space

complexity, even though most high-level languages provide sorting as a built-in function. Even if

most programmers may not do a formal complexity analysis for each program they write, having

a sense of the time-space complexities of the built-in procedures of different high-level

languages is imperative to writing efficient code. It is equally important to visualize certain

aspects of machine architecture. For example, depending on the language, a recursive solution to

a problem may cause a stack overflow––running out of space, or memory––far more quickly

than an iterative solution.

 As we will see in Chapter 2, these lower levels can and often are made visible to the

programmer, for example by examination of stack traces or run-time analysis software.

Programming in an “intermediate” language like C++, moreover, offers both high-level

functionality and low-level manipulation of memory. But the majority of these lower-level

24

semiotic systems remain “hidden” beyond the “surface” of the Java text. High-level

programming, therefore, is an activity in which multiple representational layers must be

traversed simultaneously in the service of optimization or efficiency, one of the key technical ––

and, as we will see, political and economic––imperatives that structure modern programming.

* * *

To summarize, so far, programming:

* Traverses layers or scales of a representational system, often imagined as having hidden

depths and visible surface,

* which is necessitated by the material constraints of computer hardware

* and the technical imperative of optimization.

* Divides and re-distributes across heteromorphic scales, rather than dissolves, oppositional

forms such as form/content or object/process.

* Structures flows-of-control and creates diverse chrono-spatial figures or shapes in a discrete,

linear, static text.

* Instantiates complex chains of abstractions.

We will continue to refine and add to this (both partial and overlapping) list of qualities that

describe this figurative aspect of programming––an aspect which we will here call diagramming.

While other software theorists remark on some of the same qualities, they subsume them under

concepts or within configurations that are misleading here. By way of contrast: the eponymous

“interfaces” of Alexander Galloway’s Interface Effect, for example, are similar but not

isomorphic to our diagram-programs. The preceding description of programming resonates with

Galloway’s emphasis on media as processes of mediation rather than static entities: viscous

middles, in-betweens, or “thresholds, those mysterious zones of interaction that mediate between

different realities.” But the “interface” seems ill-suited to express this: interfaces are the thin 37

sheet or surface between two geometries. If it is a “middle,” then paradoxically one without

substance, and certainly without movement. Equally, I would argue that, as a study of new

 Alexander Galloway, The Interface Effect (Cambridge, UK: Polity, 2012), 8.37

25

media, Interface Effect ultimately, in Simondonian terms, “leaves the relation obscure” between

the relevant inter-facing realities (or, in my words, scales). This is symptomatic of Galloway’s

privileging of users over programmers; despite his insistence on the non-visual nature of new

media and the importance of properly technological considerations of the digital, his 38

orientation towards the traditionally mediatic is betrayed by his choice of a word typically

synonymous with “graphical user interface” to express his concepts.

 Diagrams, like programs, capture dynamic processes in static, abstract representations.

They usually illustrate structural relations between concepts, which may be related via, for

example: “cause-and-effect” (time), “part-to-whole” (scale), or “communication” (space/

network). For us, the the tree data structure––which we have relied on to illustrate various 39

concepts above––is a particularly exemplary diagram because it can express both temporal flow-

of-control or “decision structure” (minimax algorithm) as well as genealogies, inheritances, or

levels of abstraction (OOP class hierarchy). Additionally, when diagrams function as examples

with specific values, they play at the boundary of concrete and universal, or material and ideal.

They thus encapsulate multiple scales at once, acting as the medium through which programmers

transcode between different layers of abstraction and semiotic systems. Finally, I have chosen

this word not only because diagrams are a common tool for practicing programmers, but

“diagram” is a concept for several thinkers––chief among them Deleuze––whose writing on the

concept will be useful in the coming pages. 40

 Galloway, Interface, 17. 38

 I have neglected the concept of horizontality here, choosing instead to emphasize depth/layers/39

scale. The figures described here are by no means an exhaustive account. One might also, for
example, emphasize the lateral/horizontal relations of “communication” between the objects of
object-oriented programming, or global distributed systems of computing.

 There exist also other, related concepts of “diagram” that I will not be able to incorporate here: 40

Félix Guattari (see: Chaosmosis) and Paolo Virno (see: “Natural-Historical Diagrams: The ‘New
Global’ Movement and the Biological Invariant”) both use the word. There is also an entire field of
research relevant to cognitive science and human-computer interaction known as “diagrammatic
reasoning” (see Diagrammatic Reasoning: Cognitive and Computational Perspectives, ed. Janice
Glasgow).

26

Topologies and terrain

In order to begin to reflect on the implications of describing programming as figuration, I’d like

to point to several works that make clear the political stakes of programming’s forms. The first is

Luciana Parisi’s Contagious Architectures, which takes up similar problems––the creation of

novel chrono-spatial figures, parts and wholes, the category of abstraction, and the nature of

thought itself––in the framework of Alfred North Whitehead’s metaphysics. Via a reading of

computational ideas of infinity, Parisi argues that algorithms create digital spatiotemporalities

that “do not represent physical space, but are instead new spatiotemporal actualities.” 41

Emphasizing the shift, in architecture, from notions of Euclidean distance and distribution of

points on a Cartesian plane to distance as relational and probabilistic, Parisi describes “blob

architectures,” “surfaces of continuous variations, in which the physical distance between points

has been transformed into a temporal variation.” The architectural trend she discusses––42

parametricism––designs structures using algorithms that incorporate environmental

contingencies as input “parameters.” This spatialization of temporal terms corresponds to an

aesthetic form of “folds, morphologies, smooth surfaces, and real-time evolving structures” as

well as a mode of control that “anticipates (and does not repress) change before it is actualized,

and rather uses change to program new actualities.” In digitalized urban planning, methods of 43

control and topologies are thus products of the same algorithm. Unlike Ernst, who highlights the

chronopoetical digital movements that occur below human scale, Parisi describes, via examples

taken from recent architectural practice and theory, the creation of spatiotemporal topologies

within which humans live. This helps us to recognize the implications of programming in terms 44

of power and human subjects. As she emphasizes, architecture is only one application of the kind

of algorithms she discusses; “other examples might include the relational architecture of

 Luciana Parisi, Contagious Architectures: Computation, Aesthetics, and Space (Cambridge: MIT 41

Press, 2013), xiii.
 Ibid., 83.42

 Ibid., 88; 85. 43

 Actually Parisi’s primary interest is not humans at all––neither the programmer (or architect) who 44

creates such flows-of-control, nor the citizens who inhabit them––but algorithms as constituting a
nonhuman mode of thought via the incursion of random data into computer processing.

27

databases, the cultural, political and economic statements of search culture, the connectedness of

social media, and the immediacy of data communication.” 45 46

 Justin Joque’s Deconstruction Machines: Writing in the Age of Cyberwar thinks digital

topologies on an even larger scale: the global communications networks that construct new

temporal and spatial relations that overlay geographic and geopolitical space. Joque emphasizes

that these are not only spaces of frictionless communication and instantaneity; “the spatial

arrangement that arises is not a uniform closeness of all spaces on earth.” Rather, the World Wide

Web is defined as much by the new borders it produces: “blockages and slownesses” as well as

Parisi’s smoothness and speed. Joque’s analysis, to which we will return, examines these 47

topologies in terms of cyberwar and sovereignty. Both Parisi and Joque’s digital objects are

larger-scale products of programming as we have described it. They illustrate that

programming’s diagrams are not merely aesthetic forms, but shapes that structure thought and

behavior, flows of control that regulate capital and political investments.

 Another variation on the theme of topology more directly relevant to our interest in

reading/writing is Althusser’s description of writing as constructing fields or terrains of

knowledge. Although he emphasizes that this figurative language is merely metaphorical, here,

Parisi’s topologies offer a striking parallel. For Althusser, one of Marx’s major philosophical 48

contributions was the insight that science occupies a terrain, or problematic, “within the horizon

of a definite theoretical structure” that “constitutes its absolute and definite condition of

possibility, and hence the absolute determination of the forms in which all problems must be

posed.” Reading critically, as with writing, is the creation of such terrains––terrains which 49

make themselves felt in the same manner as programming’s topologies, by, however indirectly,

 Parisi, Contagious, xxiii.45

 I would be remiss here not to point to Peter Eisenman’s theory of the architectural diagram, which 46

he derives from a reading of Derrida. The relationship of diagram to architecture Eisenman develops
bears similarity to our theory of programming-as-diagramming, in which the diagram is both a
practical tool and a figure that expresses the specificity of the discipline. Eisenman also used an
initially pre-digital method of diagramming to conceive of new buildings themselves; in which case
the diagram “is a mediation between a palpable object, a real building, and what can be called
architecture’s interiority.” Eisenman, Diagram Diaries, (New York: Universe, 1999), 27.

 Justin Joque, Deconstruction Machines: Writing in the Age of Cyberwar (Minneapolis: University 47

of Minnesota Press, 2018), 35.
 Louis Althusser, Reading Capital (London: New Left Books, 1970), 26. 48

 Ibid., 25. 49

28

structuring our political and cultural reality. As Ellen Rooney emphasizes in “Live Free or

Describe,” Althusser is a thinker of forms, of reading and writing as problems of form. For 50

example: the manner in which he contorts concepts of space in his description of a––from the

perspective of Euclidean geometry, impossible––topology in which “all its limits are internal, it

carries its outside inside it,” that is “infinite because definite,” having “no external frontiers

separating it from nothing, precisely because it is defined and limited within itself” is 51

reminiscent of the complex algorithmic forms Parisi describes, and that programmers instantiate

in text. In subsequent chapters, we will examine further points of similarity, as well as difference,

between programming and symptomatic reading.

The Diagram

Gilles Deleuze is another philosopher who might be called a “thinker of forms”; his lovingly

described figures––the rhizome, for example, or the plane of immanence––do much of the

conceptual work of his philosophy. We will focus on the two primary forms elaborated in his

book on Foucault: here, the diagram, and, in Chapter 3, the fold. Foucault himself uses the term 52

“diagram” in Discipline and Punish: the Panopticon is a concrete assemblage animated by a

more general diagram, a “mechanism of power reduced to its ideal form” and “detached from

any specific use.” The diagram, Deleuze continues, is “a cartography that is coextensive with 53

the whole social field. It is an abstract machine.” These diagrams operate at the macroscopic 54

level: They express one of multiple configurations of power relations of a society at a given

moment in time. For this reason, they do not have a specific instantiation or use in the way a

 Ellen Rooney, “Live Free or Describe: The Reading Effect and the Persistence of Form,” 50

differences (vol: 21:3), 132. My reading of Althusser here, and my project in general, is highly
indebted to Rooney’s work on form and critique.

 Althusser, Reading, 27. 51

 Deleuze also describes a somewhat different “diagram” in the context of Francis Bacon’s painting 52

in Logic of Sensation. The diagram of Foucault seems nearly identical to the concept of dispositif or
apparatus that Deleuze discusses in his essay on Foucault: “What is a Dispositif?” in Two Regimes of
Madness, trans. Ames Hodges and Taormina, Mike, ed. David Lapoujade (Cambridge: MIT Press,
2006), 338-348.

 Michel Foucault, Discipline and Punish, trans. A. Sheridan (New York: Pantheon, 1995), 205.53

 Gilles Deleuze, Foucault trans. Séan Hand (Minneapolis: University of Minnesota Press, 1988), 54

34.

29

program does. At the same time, however, Deleuze leaves open the possibility of the diagram

operating at multiple scales.

The diagram acts as a non-unifying immanent cause that is coextensive with the whole
social field: the abstract machine is like the cause of the concrete assemblages that
execute its relations; and these relations between forces take place ‘not above’ but within
the very tissue of the assemblages they produce. 55

The diagram can be apprehended both as an abstract form, and as that internal engine which

powers the concrete technologies of power. In this sense, Deleuze argues, Foucault saw the

Panopticon not only as a technology specific to prison and systems of surveillance, but also as

having an “abstract formula”: namely, no longer merely “‘to see without being seen,’ but to

impose a particular conduct on a particular human multiplicity.” The diagram moves on a larger,

higher, or more abstract level than the concrete assemblage, and is their cause. But these

relations are not to be understood in the simplistic scalar senses of whole/part or large/small nor

linear cause —> effect; rather, the “larger” cause is immanent to the “smaller” concrete

assemblages.

 To generalize this multi-scalar characteristic of the diagram, we might say that, as a

figure, it is inherently one which cuts across layers––a dia-gram, a diagonal. Deleuze also

identifies diagonality as a key feature (one might say a movement, or a method) of Foucault’s

archaeology. The conceptual architecture constructed in The Archaeology of Knowledge, as

Deleuze tells it, is a stratification of semiotic systems into heteromorphic layers and thresholds,

in which the statement is characterized by “the shape of the whole curve to which [its elements]

are related,” governed by rules or patterns of formation that operate transversally. Deleuze 56

emphasizes not only figures and forms, but the movement between layers: Manovich’s

transcoding. Programs have a different content than statements or discursive formations: For

instance, the problematics of the position of speaking subject and repetition in the Foucauldian

sense are foreign to code (a point to which we will return in the conclusion). But they are

strikingly isomorphic. The archaeologist, like the programmer, “must pursue the different series,

travel along the different levels, and cross all thresholds; instead of simply displaying

 Deleuze, Foucault, 37.55

 Ibid., 4. 56

30

phenomena or statements in their vertical or horizontal dimensions, one must form a transversal

or mobile diagonal line.” Like the archaeologist, the programmer tracks heteromorphisms:

discontinuities and lines of fracture between layers.

 Beyond this formal similarity, the Deleuzian diagram allows us to tie programming more

tightly to the forces that animate the whole range of Foucault’s work: knowledge, power,

subjectivity. For the Foucault of Discipline and Punish, Deleuze argues, there are two

fundamental forms: the visible and the articulable, system of light and system of language, form

of content and form of expression. The rather idiosyncratic meanings Deleuze gives to the 57

concepts of form, matter, and functions, are not particularly relevant here, nor is the lengthy and

acrobatic paraphrase required to trace the exact contours of the highly complex shape Deleuze

calls “diagram.” But, broadly speaking, the diagram is “a display of the relations between forces

which constitute power.” In the passage from diagram to concrete assemblage, the two forms 58

discursive/non-discursive or articulable/visible are differentiated. This bifurcation is the

operation of knowledge, of which power is the immanent cause. The diagram represents the 59

historically specific situation of power, knowledge, and discursive systems in relation to one

another.

 Programming is the process of constituting exactly these relations: the capture of the non-

discursive (data) in specific discursive or representational forms (a database, an algorithm), the

instantiation of many concrete assemblages patterned by the same diagram––and all of these

operations guided or animated by a particular expression of power. This force that diagonally

traverses every layer of programming––the meta-diagram of both programming and capitalism––

is optimization. The imperative to optimize time and space on the lowest level of technicity is 60

the same “relation between forces that constitute power” that patterns the lives of individuals. 61

As the technical mandate of programming, the abstract formula of optimization is actualized in

each program, just as it structures production and society on a larger scale. Although we are

 Deleuze, Foucault, 33. 57

 Ibid., 36. 58

 Ibid., 38. 59

 Beyond optimization, another technical imperative one might emphasize, as Joque does in 60

Deconstruction Machines, is that of “security.” This might also be easily tied to a diagram structuring
both programming and political or social reality.

 Deleuze, Foucault, 36. 61

31

limited in our scope to consideration of the former, microscopic scale, the theme of

“optimization” might be identified in both economic and cultural phenomena from labor

management practices at Amazon’s fulfillment centers to the spiritual and physical exercises

aimed at feminine self-actualization Gwyneth Paltrow prescribes on her TV show The Goop Lab.

If knowledge is the concrete assemblages through which the diagram operates, then, in the case

of programming, the diagram is the movement of power that connects all the layers of a program

at various points, the force that animates them, the running itself which unifies forms in an

expression of force. It is, literally, flow-of-control. Deleuze’s diagram allows us, therefore, to

emphasize that, in programming, taking-of-form is always a question of power.

 By way of comparison, one might easily point to the––sometimes obviously, sometimes

insidiously––violent structures of domination computer technologies instantiate and uphold

across the world. But Deleuze also opens up another possibility, one that will bring us back to the

question of writing:

There is no diagram that does not also include, besides the points which it connects up,
certain relatively free or unbound points, points of creativity, change and resistance…For
each diagram testifies to the twisting line of the outside spoken of by Melville, without
beginning or end, an oceanic line that passes through all points of resistance…From this
we can get the triple definition of writing: to write is to struggle and resist; to write is to
become; to write is to draw a map: ‘I am a cartographer.’ 62

I want to dwell on this final comparison between writing and cartography. If Foucault is

Deleuze’s “new cartographer,” the writer, the drawer of maps, then he is also the drawer––or is it

the creator?––of diagrams themselves. Here, as with Althusser, the activity of writing is that of

constructing new topologies or “dimensions”: in the case of Foucault, a “diagonal dimension, a

sort of distribution of points, groups, or figures that no longer act simply as an abstract

framework but actually exist in space.” Here, we might note a slippage between the 63

representation, or recording, of the diagram and its creation as an “actual” entity––the diagram,

we recall, is the display of the relations between forces, but also the operation of these forces

themselves––that maps well onto the dual semiotic and functional nature of computer programs.

 Deleuze, Foucault, 44. 62

 Pierre Boulez, Relevés d’apprenti (Paris: Seuil, 1966), quoted in Deleuze, Foucault, 22. Emphasis 63

mine.

32

In the same movement through which Deleuze opens up the possibilities for “creativity, change,

and resistance” in the diagram, he relates it closely to the activity of writing. The diagram that is

created––rather than merely drawn or recorded, as in archaeology––through writing is a diagram

of a particular kind: a fold, or what Foucault calls a technology of the self. This passage points us

towards a comparison between programming and writing, in fact, between programming and

Foucault’s own writing (which we might place under the loose category of “critique”), which we

will explore in the following chapters.

33

CHAPTER 2. BUGS AND MATERIALITY

It’s not a bug, it’s a feature.
- Programming proverb

A key strategy of Derrida’s deconstruction of Western metaphysics is his foregrounding of the

“organization of the signifier” rather than the “semantic, that is, thematic, content of a text.” 64

His attention to, for example, the espacement of written words (which might also be called their

discreteness or digitality), emphasizes the forms of representation: that which, in logocentrism, is

deemed accidental or marginal to the true function of language: namely, the fluid transmission or

communication of meaning. Here, “form” is thus co-extensive with the materiality of the

signifier. This interest in materiality gives rise, in Derrida’s writing, to a multiplicity of

conceptual figures deriving from, and devoted to, technologies of inscription: “I have always

written, and even spoken, on paper––at once about paper, on the surface of paper, and with an

eye to publishing a paper. Support, subject, surface, mark, trace, gramme, inscription, fold…” 65

His style is marked by a strategic rhetorical deployment of these formal qualities: In “Limited

Inc a b c…,” for example, he puns with the sensible, sonic qualities of words, as well as their

spelling, to deliver a scathing response to Searle’s defense of traditional linguistics. This play 66

with the materiality of signs is also often done via programmatic processes. In the “Envois” of

The Post Card, he omits bits of text of indeterminate length and replaces them with lines of 52

spaces, determined via “a cipher that [he] had wanted to be symbolic and secret––a clever

cryptogram, that is, a very naïve one, that had cost [him] long calculations.” In this way, 67

Derrida foregrounds the formal qualities of language forcibly; mediation is made sensible via

mathematical or mechanical means. Computer code, however, does not require such de-

 Jacques Derrida, The Post Card: From Socrates to Freud and Beyond, trans. Alan Bass (Chicago: 64

University of Chicago Press, 1987), 424. Emphasis mine.
 Jacques Derrida, “Paper or Myself, You Know… (new speculations on a luxury of the poor),” 65

trans. Keith Reader, Paragraph (vol. 21:1), 1.
 Jacques Derrida, “Limited Inc a, b, c…”, Limited Inc, trans. Samuel Weber and Jeffrey Mehlman 66

(Evanston: Northwestern University Press, 1988).
 Derrida, Post, 5. 67

34

naturalizing interventions in order to make felt the intertwined categories of materiality (physical

substrate) and form (structure or syntax) that enable the semantic “content” of computational

inscriptions. Rather, programming necessitates the manipulation of these qualities.

 This chapter leaves aside Deleuze’s diagram in order to describe programming-as-writing

at a more granular level, on the scale of the operation of individual signs themselves. I draw

primarily on Derrida’s critique of logocentric philosophies of language in “Signature, Event,

Context” and “White Mythology.” Programming is a writing in which the materiality of the

technology of inscription cannot be forgotten, in a semiotic system in which meaning is variable

and unstable, and where failure of communication is a constant reality. If logocentrism entails a

kind of suppression or malignment of mediation, programming materializes and cannot escape

its interferences. Via this observation, a secondary argument will thread through this chapter: that

programming, in its “thinking within” mediation, bears a formal similarity to certain aspects of

deconstruction itself. The importance of diagrammatic thought (thinking across scales of

technicity and figurations of time and space), will also find further illustration here via technical

examples in C and Python.

Supplement, support, software

In comparison with the fairly modest technologies of pen and paper that have supported centuries

of written language, the software tools that enable programming are elaborate assemblages. As

Wendy Chun demonstrates, high-level languages themselves are a kind of––ideological––

software, or mediation, without which the growth of the tech industry is unimaginable. Her 68

aversion to the semiotic abstractions of high-level languages over the less human-readable, more

“material” systems languages veers close to a nostalgia for a pre-prosthetic origin within a

technology itself. As discussed in Chapter 1, systems languages are already an abstraction from

the electronic signals that, following Chun’s logic, might be said to “really” constitute the

technical reality of computers. Oddly, an underlying strand of Chun’s argument seems to be a

complaint that software (or high-level languages) make computers more legible and therefore

 Chun, “Software,” 38. This is also the argument she develops in Programmed Visions.68

35

usable, when such usability is arguably central to all technology. Not only that, but language

itself, as Derrida emphasizes, is itself technological. Programming dramatically foregrounds 69

this technological character of writing, as well as the infinite proliferation of prostheses of all

kinds.

 In a word-processing software like Word, certain combinations of signs may conjure up a

thin, squiggly line, prompting the spell-checker to ask: “Did you mean..?” (Derrida describes

submitting his writing of Circonfession to such injunctions––“The paragraph is going to be too

long; you should press the Return button”––and thereby ending every paragraph after roughly 25

lines.) The text editors used for code offer many such “supports” to writing. On the most 70

rudimentary level, syntax highlighting allows words to appear in specific colors depending on

their function: Identifiers might be pink, user-defined functions green, functions provided by the

programming language blue, and punctuation, like brackets and semicolons, white. The margins

of the text window are scored by line numbers, allowing the programmer to locate specific lines

of code in the event of an error message, which typically returns the line at which the program

prematurely terminated execution. More sophisticated integrated development environments

might offer a range of tools designed for a specific language, from debuggers (testing software

that allows the programmer to step through the execution of a program line by line) to

convenient depictions of class hierarchies. 71

 Many of these tools are, in a sense, visualizations: They not only supplement the purely

linguistic digitality of language with sensorial cues (such as color), or analog representations

(such as class diagrams), but visualize what is invisible or opaque (the inner workings of the

machine). A debugger, for example, allows the programmer to set breakpoints within the 72

temporal execution of the program, at which they can inspect the values to which different

variables correspond. Figure 7, a screenshot of the integrated development environment Eclipse’s

debugger, illustrates the rich semiotic machinery with which professional software development

 Jacques Derrida, Of Grammatology, trans. Gayatri Chakravorty Spivak (Baltimore: Johns Hopkins 69

University Press, 2016), 8.
 Jacques Derrida, “The Word Processor,” Paper Machine, trans. Rachel Bowlby, 22. 70

 Such as the class hierarchy diagram examined in the previous chapter. 71

 The “visuality” of software is precisely what Chun takes issue with. See Chun, “Software.”72

36

is supplemented. The four quadrants are different representations of “where” or “when” you 73

currently are in the program’s execution. The bottom-left window is the actual Java code written

by a programmer, whereas the window to its right is Eclipse’s schematic rendering of the

program’s functions. The top-left window shows the list of function calls performed by the

machine: the kind of linear or time-based representation of the computer’s technicity for which

Chun advocates. The top-right shows the values of different user-defined identifiers at this point

in the program’s execution: For example, at this temporal-spatial “moment” in the code, radius is

set to 15.

 Stephen Wong, “Eclipse Debug Perspective Screen Shot,” COMP310, Rice University, 2017, 73

accessed April 10, 2020, https://www.clear.rice.edu/comp310/Eclipse/debugging.html.

37

FIGURE 7

Debugging in Eclipse.

https://www.clear.rice.edu/comp310/Eclipse/debugging.html

 Profilers, on the other hand, are programs used for time- and space-optimization that

quantify. Profiling returns a measurement of, for example, the time spent in each part of the

program, thereby alerting the programmer to functions that most require optimization. With this

quasi-empirical instrument, one approaches the program in the same way a natural scientist

would her object of study. Unlike the mathematical formulas to which they are often compared,

programs take on a life of their own, requiring data analysis in addition to diagramming.

Although the information provided by debuggers or profilers could be logically deduced from

the code itself––for example, by performing a theoretical time-complexity proof––their

widespread usage exhibits the extent to which programs are often opaque to their own makers.

 As Derrida points out with concern, spellcheck may harden certain semiotic structures,

giving Word’s conventions the appearance of concrete constraints. But in Word, unlike a code

editor, corrections are ultimately only suggestions. Spelling and grammar “mistakes” are rarely

absolutely prohibitive to communication. In code, however, the slightest deviation from the

prescribed syntax will cause the intended message to miss its recipient, the machine; the

interventions made by code editing software––for instance, the automatic insertion of a missing

parenthesis––are therefore more than mere suggestions. Moreover, software like Word

supplements a presumed natural fluency with language. But writing even trivial syntactically

correct programs without the aid of software––say, on paper, or on a whiteboard––is difficult,

and, for large-scale projects, virtually unimaginable. For these reasons, the “paper” of

programming––the interface through which inscription is carried out––is more prominently

present than the more easily marginalized physical supports of writing (whether parchment, or

Pages). Programming is a writing of which the prosthesis is conspicuously visible––a reality

produced, as we will explore later in this chapter, by the inescapable incursions of error.

Variables and polyvocality

By providing language-specific features like syntax highlighting and methods of tracking

variable assignment, these software supplements might be characterized as offering a

visualization of the semantic context in which the words of a high-level program are run. Unlike

38

in human writing, this context is, as Derrida would say, “fully saturated.” The situation in 74

which high-level code is written fully determines its meaning. This total contextual positioning is

produced across a variety of scales: Code is written in a certain language, stored in a specific file

location, and run on certain hardware. It is embedded in a network of countless other programs

(compiler, interpreter, operating system), and can be supplemented by external resources (like

imported libraries). These technologies, together, create the conditions of its functioning and

enable complete specification of its meaning. There thus exists the structural possibility (and

desirability) of deterministically produced correct or expected behavior. Here we find the crucial

difference between code and Derridean writing: given that a context were known completely by

the human programmer, the behavior, or meaning, of a certain line of code would be

unambiguously determinable in every instance. Complete comprehension of these different 75

spatial and temporal contexts, levels, or scales, however, is practically impossible. This section

describes several aspects of variable assignment in order to illustrate the scalar or diagrammatic

agility required to create “meaning” in programming and the manner in which problems of

materiality manifest, and to give a sense of the thick semiotic webs that, as we will see,

inevitably trip up even the most expert programmer.

MEMORY ADDRESS: MEANING AND MATERIALITY

In “White Mythology: Metaphor in the Text of Philosophy,” Derrida links the philosophy of

language inaugurated by Aristotle to Western metaphysics via the concept of metaphor.

Axiomatic to logocentrism is the original, sensible image to which corresponds exactly one

signifier: “to be univocal is the essence, or rather the telos of language.” Metaphor is therefore 76

dangerous because it “may set off an errant semantics. The sense of a noun, instead of

designating the thing which the noun should normally designate, goes elsewhere.” Metaphor

 Jacques Derrida, “Signature, Event, Context” in Limited Inc, 3.74

 This is the aspect of code most frequently commented on by scholars in comparing programming 75

to writing. Hayles, for example, opposes the materiality of code to Derrida’s grammatological theory
of writing because of this “clarity” and “unforgivingness.” See N. Katherine Hayles, Writing
Machines (Cambridge: MIT Press, 2002), 48. We will complicate this argument further towards the
end of this chapter.

 Jacques Derrida, “White Mythology: Metaphor in the Text of Philosophy” trans. F.C.T Moore, 76

New Literary History (vol. 6:1), 8, 48.

39

both produces an excess of signs––one sign being substituted for another, and thus pointing to

the same referent––and exposes the existence of concepts or referents which do not have a

signifier proper to them. In a vocabulary more proper to computer science: The logocentric 77

model of language assumes a bijection, a one-to-one relationship, between signs and referents.

 The idea of a sensible, pre-linguistic entity which is expressed by a sign is foreign to

computer science; although the linguistic sign in code is inextricably linked to a material

operation, programming languages encapsulate a formal system which is non-representational––

it bears no relation to an external non-semiotic reality. It is not a model, but a world unto itself.

This is only one sense in which many of the problematics of metaphor Derrida links to

philosophy in “White Mythology” are inapplicable here. But the concept of metaphor, in

confounding an “easy” or self-present system of meaning through the introduction of

polyvocality, is a way of foregrounding the semiotic system itself, in a manner that holds certain

similarities to code. Programming is predicated on the substitutability and proliferation of signs,

rather than their stability. The relationship––which we will provisionally call “meaning”––

between the surface-level sign (the word typed by the programmer) and its interpretation by the

machine is not only inflected by the various contexts at play, but, in concrete instances, actively

created by the programmer through the process of variable assignment or name-binding.

 We will first examine name binding––the assignment of data to identifiers––in the low-

level language C. Identifiers are the lexical tokens by which a programmer names various

components of the program, the most basic of which is a variable. One might write, for example,

x=1, thereby assigning the identifier x to the variable value of 1. Each identifier corresponds to a

specific location in memory, a memory address, where the value is stored. Technically, the

“meaning” of an identifier is this location, the “contents” of which can be modified. This is

particularly visible in C, in which variables can also be manipulated via pointers, which hold a

memory address accessible to the programmer. Figure 8 illustrates the process by which a

pointer, p, is assigned a value. First, the pointer variable *p is instantiated without a value: It is

uninitialized. It is then assigned to the memory address of the reference variable a, which has a

value of 4. One can access both the memory address and the values of *p and a. Semantically,

 Derrida, “White,” 32. 77

40

they are identical, but depending on their interaction with other parts of the program, it might be

preferable to use one or the other. One can create multiple pointer variables that point to the same

address or value, for example via pointers which point to other pointers. There are many reasons

why identifiers that refer to the same value might be made to proliferate in this way, including to

allow multiple programmers to work on the same project, and the necessity of reassigning

identifiers to new values in different parts of the program.

 We are considering high-level, rather than systems programming. But, as argued in

Chapter 1, just as a high-level program relies on transcoding into other languages, effective high-

level programming requires an understanding of lower-level system behavior. I have provided

this technical example in C to emphasize the material reality of programming’s signs. Unlike in

the purely symbolic language of mathematics, the numbers 1 and 1.0 are not equivalent in

computer science: They take up different amounts of space in memory. Although the specifics of

memory management are handled “under the hood” in high-level languages, programming is

always the creation of representational forms from ultimately material transformations of data.

MEANING IN SPACE AND TIME

The materiality of the memory address in comparison with the pointer or identifier highlights the

different status of “meaning” across scales of technicity. But one can also track varying contexts

of meaning within the dimension of the high-level program. If one identifier can point to or hold

41

FIGURE 8

Assigning pointer values in C. (Thomas W.
Doeppner, lecture slides for CSCI0330:
Introduction to Computer Systems, Fall 2017.)

multiple values, this is because it traverses a multiplicity of different spatiotemporal coordinates

that establish context and determine its meaning.

 Spatially, a name binding (variable) is located within a certain semantic scope: the area of

code in which an identifier is bound to a certain value. Outside of this scope, the identifier x

might hold a different value––say, a list rather than an integer––or no value at all. In the Python

example shown in Figure 9, the variable y has a scope that is global: Its value can be accessed

from any point in the program (the matter of whether, where, and how its value can be modified

depends on the programming language). The identifier x is defined twice: In my_function_1, it is a

local variable with an initial value of 0 that is modified within the function. In my_function_2, x is

the name of the argument parameter of the function: Its value is dependent on the argument

passed in when the function is called. For example, calling my_function_2(3) would temporarily

assign x to 3, and return the value 103. Outside of these two functions, the identifier x is out of

scope––it holds no meaning, and writing the line y=y+x would throw an error message. A variable

is also given meaning by its positioning in the temporal or linear execution of a program.

my_function_1 consists of an iterative loop in which 1 is added to the integer x ten times (resulting

in a return value of 10). It is this dynamic transformation of meaning that is often most difficult

for programmers to track. The debugger in Figure 7, which materializes certain aspects of the

program’s context at a frozen moment in time, is meant to provide insight into these operations

by providing four different ways of representing the contextual positioning of the program at a

single breakpoint.

42

FIGURE 9

Two Python functions in which x and y operate
as argument parameters, local variables, and
global variables in different contexts.

 Python uses a concept of lexical or static scope. Older programming languages operate

with dynamic scope, in which the binding of an identifier is interpreted not by its location in the

written program, but purely by the point in execution in which the program finds itself. 78

Because the latter is no longer used (in an instance of the historic trend in programming

languages away from linear, time-based representation and towards spatialization that Chun

describes), I elide its discussion here, but scope is an interesting case study for the infinite ways

in which programming languages can differ in their implementation. The manner in which

“meaning” varies under the hood across languages also contributes to the “denaturalized”

semiotic sensibility necessary for programming I argue for here. Unlike most humans, most

programmers achieve fluency in many languages (Brown’s introductory Computer Science

sequence teaches four): Not only must programmers think within the constraints of mediation,

but they bear no illusion that, within the discipline of computer science itself, there is any one

“natural” language or method of representing technical systems.

 This cursory summary of identifiers, variables, and memory ought to sketch some of the

complexity of computer science’s semiotics, which far exceeds a simple, stable bijection between

signs and referents, i.e., between variables and values, or objects in memory. Many variables can

refer to the same object, and a variable’s meaning can pass through many mediations, via

assignment to a string of many other variables, before “arriving” at its actual value. (Note that,

while this chain of “deferral” is potentially very lengthy, it is not indefinite or infinite.) The value

of a variable can change countless times throughout a program, as well as, as in the case of

uninitialized pointers, hold no value at all. In this way, programming languages are hardly

univocal. Nor is meaning natural or fully “self-present” to the programmer, rather, it is constantly

mediated, channeled through a multiplicity of signs, passed by copy, passed by reference,

modified, nullified, made anew. Variables are always being assigned new values, swapped with

each other, and even declared void of meaning by assignment to the value NULL. Programming

 Shriram Krishnamurthi, “Scope,” Programming and Programming Languages, accessed March 78

31, 2020, https://papl.cs.brown.edu/2018/Interpreting_Functions.html#%28part._.Scope%29.

43

https://papl.cs.brown.edu/2018/Interpreting_Functions.html#%28part._.Scope%29

is characterized by polysemy, excesses and vacuums of meanings which are constantly

duplicated, copied, and rearranged with regard to their signs. 79

 Variables in programming and metaphors as described in “White Mythology” are not

equivalent––most importantly, variables do not hold the same status of both grounding and

destabilizing the function of their language––but both are linguistic operations through which the

thickness of language as a medium becomes apparent in different ways. If logocentrism involves

the illusion of meaning as self-evident, self-present, and self-identical, ideal and therefore

divorceable from its expression in a certain medium, then the vagaries of variable assignment,

like metaphors, confirm the difficulty with which representations are made: the material supports

from which they are inextricable, their shifting value based on context, and therefore the

unthinkability of meaning outside of language. Another name Derrida has for logocentrism is

phonocentrism: the “absolute proximity of … voice and the ideality of meaning” that

presupposes the possibility of wholly pre-figured concepts that are transmitted via a clean, “loss-

less” communication. There is, of course, no speaking in computer science; equally, as we will 80

explore in the next section, the persistence of failures of communication in coding via bugs

introduces a rupture between the intentions or “voice” of the coder and the effects of code,

making impossible a phonocentric understanding of programming.

Failure: Bugs and edge cases

In code, even the smallest typo in language syntax (analogous to a spelling or grammar mistake)

can lead to failure during the program’s execution: what one might call the “non-arrival” of

intended meaning at the program’s destination. In “Signature, Event, Context,” Derrida locates

such mis-firings as not only a possibility, but a structural feature of writing. Because the

permanence of the written sign “carries with it a force that breaks with its context, that is, the

collectivity of presences organizing the moment of its inscription,” allowing also its iterability or

citationality, the “infelicities” of speech that J. L. Austin relegates to the margins of his theory of

 In passing, Manovich links this variability of signs within the computer to broader social shifts in 79

which every cultural “constant” has become substituted with a “variable.” Language, 43.
 Derrida, Grammatology, 12. 80

44

language are actually an “essential risk” of communication. This possibility for failure or 81

existence of indeterminacy is, for many theorists of software, what is impossible to locate in

code. As Justin Joque notes, in order to establish a (misleadingly) firm division between 82

computer and natural languages, such readings must caricature the former as fully

understandable and self-present (or vice versa). Because the inevitability of failure in code is 83

crucial to my description of programming, I will briefly outline two interesting, different

approaches to this theme to clarify my own argument.

 Joque’s Deconstruction Machines considers several instances of attacks on computer

systems in which user input is designed in order to exploit flaws or inconsistencies in the code. 84

Because the hacker’s modus operandi is to “read and write systems against themselves,” Joque

compares the semiotic strategy of cyberwar to Derridean deconstruction. In code’s vulnerability 85

to attacks, Joque identifies the same kind of failure that Derrida does in written language:

The possibility that the execution of a program could produce an unexpected result,
either accidentally or as the result of malicious code, injects into computation the
possibility that it differs from itself. The exact same code run at a different time or in a
different place bears the possibility of different results. This potential difference
simultaneously indicates a necessary deferral: we can never know what a program does
or means until it is executed. 86

This is also the spirit of my argument. Joque and I approach the same issue from opposite,

though symmetrical, positions: Whereas I will deal with errors that occur during debugging (i.e.,

before a program is made public), Joque considers errors that may be willfully introduced by a

second programmer, who reads the potential flaws in the first program in order to conduct a

cyberattack. Here, however, I would make a finer distinction than Joque does: Although “we”

may rarely (“never” is an overstatement) know exactly what a program will do until it is

executed, this is not to say that the program itself behaves inconsistently. As explained earlier in

 Derrida, “Signature,” 9, 15. 81

 See, for example, Hayles’s comparison of code to Derridean différance in My Mother Was a 82

Computer (Chicago: University of Chicago, 2005), 47.
 Joque, Deconstruction, 20-21.83

 For example, if a form expects only certain number or certain types of characters to be entered as 84

login information, and an attacker enters additional or abnormal characters, they might be able to
overwrite the executable code of the form itself, replacing it with malicious code.

 Joque, Deconstruction, 75. 85

 Ibid., 76. 86

45

this chapter, unlike writing, the “context” of every program is fully saturated in that it is

completely deterministic. The fact that human computer users can never fully anticipate a

program’s behavior due to their insufficient grasp of its technical functioning is not the same

feature of writing Derrida describes in “Signature, Event, Context.” For Derrida, the possibility

of the non-arrival of its meaning is constitutive of writing’s structure: This can not be said of

either bugs or cyberattacks.

 One approach to conceptualizing such an interior condition of computational failure can

be found in Beatrice Fazi’s Contingent Computation: Abstraction, Experience, and

Indeterminacy in Computational Aesthetics, via her re-reading of several fundamental texts in

computational theory: Kurt Gödel’s incompleteness theorem and Alfred Turing’s proof of the

existence of incomputable functions. These proofs are usually interpreted as demarcating the

limits, and thereby limitations, of formal axiomatic systems. Fazi, however, uses Turing’s proof,

which addresses the issue of defining the infinite in finite terms, to locate an “opening up” to

infinity within (rather than at the limits of) computation. Turing’s proof shows that no general

algorithm can exist to decide whether another program will run infinitely or terminate. In short, 87

“computation is made up of quantities, yet these quantities cannot be fully counted.” Although 88

Fazi does not put forward this argument herself, one might compare this insight to Derrida’s

exposure of indeterminacy of meaning in writing. For Derrida, this destabilizing of traditional

philosophies of language is also a critique of a Western metaphysics of presence. Similarly, for

 For example, a while loop whose condition to continue is true will run forever, which is not 87

necessarily undesirable. Distinguishing such infinite loops from statements that will terminate is
known as the halting problem.

Note that “computation” is to be understood here less in terms of specific digital technologies, and 88

more as any method of systematizing reality through an abstract, formal structure composed of
discrete quantities. (Fazi, Contingent Computation (London: Rowman and Littlefield, 2018), 47).
Fazi’s argument, which is similar to Parisi’s in Contagious Architectures, relies on a Whiteheadian
reading of already-complex computational theory, for which reason I elide in-depth discussion of it
here. She argues that this ingression of infinity, and hence indeterminacy, into computation
establishes the basis for a computational “aesthetics” that is divorced from the empirical or sensible.
In this sense her book might be seen as one answer to the call with which Derrida opens his essay
“Typewriter Ribbon:” to think the incompatible concepts event and machine together, a feat that
would produce “a new logic, an unheard-of conceptual form” through “a thinking [that] could belong
only to the future––and even … makes the future possible.” Derrida,“Typewriter Ribbon: Limited
Ink (2) (“within such limits”),” trans. Peggy Kamuf, in Material Events: Paul de Man and the
Afterlife of Theory, ed. Tom Cohen, et al. (Minneapolis: University of Minnesota Press, 2001):
277-278.

46

Fazi, the contingency inherent to computation also serves as a refutation of metacomputation or

mathesis universalis, the rationalist dream of “a comprehensive science of calculation through

which one would be able to grasp the fundamentals of reality itself.” 89

 This highlights a crucial difference between her analysis, Derrida’s, and mine. Whereas

Fazi and Derrida draw metaphysical critiques from an analysis of a formal representational

system (computation or writing), I am interested in developing a phenomenological account of

the process of operating on and within this system itself. Crucially, the Derrida of “Signature,

Event, Context” rejects any analysis of the intentions of the writer or speaker. Contingent

Computation, similarly, is not interested in the “scene” of programming, but the experience or

aesthetics of the program itself. My comparison of programming’s bugs to Derridean “failure” is,

therefore, a deliberate shifting or displacement of his argument that will, I hope, nevertheless

prove useful; as we will see, the formal analogy I would like to pursue is not between the

program and the written page, but, in a spirit similar to Joque’s, between programming and

deconstruction itself.

 For Derrida, “to write is to produce a mark that will constitute a sort of machine which is

productive in turn.” Although this description is meant to highlight the radical rupture that the 90

formal system of writing introduces between the author’s intention and its received meaning, it

obscures the crucial third position (in addition to 1. the writer and 2. the writing) of the reader. It

is only through a final, human interpreter through whom Derrida’s meaning-producing

assemblage becomes complete. In programming, conversely, sign and interpretation are

combined in machinic execution. Although most code ultimately meets a reader-like user, this

user performs no real meaning-creating function, as the response to their input is already pre-

programmed. But, from the position of the programmer, the mark he has produced often

produces unintended behavior. In this sense, Derrida's formulation might be even better applied

 Fazi, Contingent, 87. 89

 Derrida, “Signature,” 8. 90

47

to code than normal writing. As Mark Fisher writes in Flatline Constructs, programs are

“radically indifferent to any intention that is not already inscribed into them.” 91

 Because human intentions are usually confused to begin with, and often become further

muddled upon inscription, all programs are riddled by errors, or bugs. The practical persistence

of bugs is not the same as the structural insistence of Turing’s incomputability, although, as Fazi

notes, incomputability implies the impossibility of algorithmically determining the bug-free-ness

of a program. Because testing software can only check a program by executing it in finite

increments, line-by-line, it is impossible for a testing program to verify the absence of infinite

loops in another program without falling into such a loop itself, and thus failing to terminate. In 92

practice, however, a software engineer may very well test his program until, having squashed all

of his bugs, he is reasonably satisfied of its correctness, or at least its viability as a product.

Incomputability, while a crucial concept for computational theory and research, is not of

practical concern to programmers. Bugs may be instances of non-arrival, of miscommunication,

but they are not structurally interior to the program, because they can be removed.

 But although any single bug can be rooted out, it is practically impossible to catch them

all. Even after a software has passed through multiple stages of testing and is made available to

the public, the cropping up of unexpected and undesirable behaviors creates the need for constant

updates. In the iPhone App Store, these are the “bug fixes and performance improvements” that

necessitate version 87, version 87.1, version 87.1.1. In these cases, the large-scale deployment of

an app to millions of users, all of them doing different things, on different operating systems, on

different hardware, combine to an un-testably high (though finite) number of configurations of

usage situations––some number of which will, without fail, give rise to undesirable program

behavior. In the cases Joque examines, this behavior is the result of intentionally malicious usage

of the program. Although a significant aspect of programming is learning to anticipate, and

specify the behavior for, such edge cases, the empirical variability of real-world applications

makes total prediction and control over such situations impossible, and debugging a Sisyphean

task.

 Mark Fisher, Flatline Constructs: Gothic Materialism and Cybernetic Theory-Fiction (Brooklyn: 91

Exmilitary Press, 2018), 109.
 Fazi, Contingent, 122.92

48

 But even when working on a small program, in which verification of its correctness is

practically possible because of its restricted scale, the process of programming is hampered by

the ease with which errors are introduced, not only on the level of syntax, but on the structural or

logical level of the program’s execution. Even in programming languages in which one has a

high degree of competency, syntactic rules are easily broken, whether through typos or

forgetfulness. This is especially true when switching between languages: where in Python one

can end a line with a return key, Java requires a semi-colon. But the impossibility of reaching

absolute fluency in programming exceeds the difficulty of remembering the more-or-less fussy

grammatical structures of different languages; more significantly, bugs persist because of the

difficulty of grasping the complex choreographies of input/output transformations the computer

performs during execution, and the complete foreignness of the computer’s “mind.” As Joseph

Weizenbaum writes, it is impossible for the programmer to “know the path of decision-making

within his own program, let alone what intermediate or final results it will produce.” This is 93

due to the complex multiplicity of technical processes triggered by hitting run on a Java

program, especially the lower-level chains of interpretation and transcription mechanisms that

are usually invisible at a high level. Many bugs are structural flaws in thinking: forgetting, for

instance, that one cannot iterate over a list while simultaneously adding elements to it, or

accidentally writing a recursive structure that never terminates. These errors are caused by the

difficulty of fully immersing oneself in a technical space governed by what is less a “logic” than

a baroque, never-fully-knowable system of meaning. Bugs are annoying reminders of the

trickiness of formal operations.

 As we have seen, the process of diagramming is enabled by an array of prostheses to the

alphanumeric character-writing of programming itself. Such software products are ultimately

prophylactics against bugs, those (supposedly) external incursions of various kinds of materiality

into the (supposedly) immaterial, logocentric writing of programs. Etymologically, these bugs

are truly entomological: The term was popularized in computer science when US Navy officer

Grace Hopper found a moth between the relays of a faulty Harvard Mark II computer she was

 Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation (New 93

York: W.H. Freeman, 1976), 234.

49

working with. Just as insects are eradicated from human habitation, the computer bug is, 94

figuratively and literally, the lacuna in the programmer’s knowledge and control of the program,

a failure in the transmission of the programmer’s meaning, an accident in syntax or logic to be

rooted out and squashed. The simplest kinds of bugs––syntax errors, or misnaming of

variables––are a function of “languages” whose ultimate technical, material implementation

require a rigidity of representation that is often difficult for programmers to adhere to. The bugs

caused in software by the edge cases of widespread usage might be called “material” in a looser

sense: their unexpectedness arises from the embedding of programs in the real world––

introduction onto the market, into the hands of different consumers, onto different systems, and

out of the sterile test-space of the computer lab. The last kind of bug is created by the multi- and

other-dimensionality of program-diagrams themselves: by the trickiness of tracking, or scaling

(in the sense in which one scales a wall or mountain), the relationship between the invisible

inscriptions that occur in the machine, under the hood, and the unnatural contortions of time,

space, and “meaning” that are suspended in a more abstract space of algorithms.

 In this chapter, we have examined aspects of programming that, in different ways,

materialize aspects of writing or mediation in general that are usually marginalized in

logocentrism: the software supplements that enable high-level coding (itself a software in

relation to low-level code); the variability of meaning; and the persistence of errors produced by

a lack of complete mastery of the technical medium––the thought that is not entirely present to

itself and therefore gives rise to unexpected sign behavior. Although the program itself differs

from the printed page, most notably in its deterministic “meaning” or behavior, I would argue

that the operations of programming as described in this chapter resemble Derrida’s own writing

––that is, the “strategic device” of deconstruction itself. Derrida objected to any description of 95

deconstruction that would reduce it to a recipe or program, explicitly warning against any

 This was 1945, when the very-large computers emitted enough heat to draw good-size flying 94

insects into their interiors, which would regularly cause shortened circuits and thus machinic
malfunctions. Boris Veldhuijsen van Zanten, “The very first recorded computer bug,” TNW, Sep 18,
2013. https://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug/.

 Jacques Derrida, “The Time of a Thesis: Punctuations,” trans. Kathleen McLaughlin, in Philosophy 95

in France Today, ed. Alan Montefiore (Cambridge, UK: Cambridge University Press, 1983), 40,
quoted in Joque, Deconstruction, 80.

50

https://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug/

“technical or procedural significations” that might insinuate themselves, liable to “seduce or lead

astray” the unwary reader. But I do not compare deconstruction to the program, but to 96

programming. Both are kinds of writing that involve a thinking not only through writing (as if it

were a frictionless “vehicle” of “telecommunication”), but of and with writing. The similarities 97

are visible in the formal and/or programmatic methods by which Derrida disrupts his prose,

allowing the syntactic structures and technologies of inscription at work to materialize. More

generally, both deconstruction and programming are a kind of writing-made-difficult, testaments

to the fact that meaning neither wholly precedes language nor can pass into it without suffering

various transformations and surprises. In this sense, writing and programming share formal

qualities in that both operate on form itself.

 Jacques Derrida, “Letter to a Japanese Friend,” in Derrida and Différance, ed. David Wood and 96

Robert Bernasconi (Evanston: Northwestern University Press, 1988), 3. Joque insightfully
summarizes Derrida’s seeming indecision over the nature of the proximity between deconstruction
and technicality; see Joque, Deconstruction, 80-81.

 Derrida, “Signature,” 3-4.97

51

CHAPTER 3. THE USER: TECHNOLOGIES OF SELF

The mode of “thinking within mediation” described in the previous chapter is an experience of

encounter. This chapter begins from the technical event of runtime, describing the mode of

subjectivity engendered by interminable, “addictive” conversation with the machine.

Programming is a double activity of reading and writing that is simultaneously a relation to

oneself and a relation to an other––a cybernetic instantiation of Deleuze’s fold of subjectivation.

To delineate the features of this cyberfold, we examine Foucault’s technologies of the self. In

contrast to the discursive practices of self-examination of classical Antiquity, programming leads

one out of oneself, and into a cybernetic system.

Runtime and recursion; the pharmakon

We have discussed meaning in terms of the values different noun-like variables hold––in effect,

in terms of their “content.” But the program, ultimately, is writing that does. It is for this reason

that it is often characterized as the consummate Austinian performative utterance. For the 98

programmer, this performativity is immediately sensible: pressing “run” prints a result to the

terminal window, refreshes the color of a web-page, or updates a database. But this executability

alone does not explain why, phenomenologically, running is such a salient feature of

 Hayles and Galloway agree that code is performative “in a much stronger sense than that attributed 98

to language” (Hayles, Mother, 50, emphasis mine), and that “code is the only language that is
executable” (Galloway, Interface, 70). The changes that occur upon the pronouncement of an “I do”
in a wedding ceremony are “weaker” because they happen primarily in the human mind, and only
effect external changes “through complex chains of mediation.” (Hayles, Mother, 50). I would argue
that this concept is part of a larger trend in software theory in which the digital is presented as the
literal instantiation of what in writing is merely metaphorical (see: Espen Aarseth, Cybertext,
Baltimore: Johns Hopkins, 1997, 2)––a stance that elides the technicity of language itself. Chun
argues for the strong performativity of “code-as-law” by drawing on Derrida’s “Force of Law: The
Mystical Foundation of Authority” to emphasize code’s collapsing of the democratic separation of
executive, judiciary, and legislative into the ultimate police power (Chun, Updating to Remain the
Same, Cambridge, MA: MIT Press, 2016, 82-85). But this comparison actually undermines any
particular strongness of code performativity: If programming is a feeling of power, surely this is no
departure from that felt by the policeman who shouts “Hey, you!” or the priest who sanctions an “I
do.”

52

programming. The significance of performativity to the process of programming itself arises,

again, through bugs and edge cases; what is deemed the culmination or telos of the program as a

technology only rises to level of experiential relevance through failures and other marginal

events. Without debugging or testing, “run” would be a rare event––merely the final step of an

otherwise static programming process. But, because of bugs, programmers run their code over

and over again, changing their text file with each iteration in response to the feedback returned

by each run.

 In debugging, the programmer thus enters into a recursive feedback loop with her

machine. Derrida is not the only one to characterize this relationship as addiction. As one tech

blog (the first of many results when googling “programming addiction”) writes:

You might imagine that a person would not want to spend hours on end staring at a
computer screen, skipping meals, losing track of time, only using a text editor, making
small changes to a text file, observing small results, over and over again––in other
words, the experience of computer programming. Those who enjoy, or, dare I say, are
addicted to computer programming––they spend their time in a trance, going through the
motions, waiting for the moment when they have solved a problem and their code does
what it was intended to do. … A degree of nervous anticipation builds up before each
verification and when the puzzle is finally solved, there is a mild or often intense feeling
of pleasure. Which then shortly subsides as the programmer then repeats the cycle, onto
the next puzzle, onto the next fix. 99

Writing in the mid-1970’s, Joseph Weizenbaum, a pioneer in artificial intelligence research who

would later become one of the field’s earliest and most vocal critics, provides a strikingly similar

description of what he calls “hackers”:

Wherever computer centers have become established, … bright young men of disheveled
appearance, often with sunken glowing eyes, can be seen sitting at computer consoles,
their arms tensed and waiting to fire their fingers, already poised to strike, at the buttons
and keys on which their attention seems to be as riveted as a gambler’s on the rolling
dice. When not so transfixed, they often sit at tables strewn with computer printouts over
which they pore like possessed students of a cabalistic text. They work until they nearly
drop, twenty, thirty hours at a time. Their food, if they arrange it, is brought to them:
coffee, Cokes, sandwiches. If possible, they sleep on cots near the computer. But only for
a few hours––then back to the console or the printouts. 100

 “The Effects of Computer Programming on the Brain,” Grindd, July 5, 2013, accessed March 31, 99

2020, http://www.grindd.com/blog/2013/07/the-effects-of-computer-programming-on-the-brain/.
 Weizenbaum, Computer, 116. 100

53

http://www.grindd.com/blog/2013/07/the-effects-of-computer-programming-on-the-brain/

In these accounts, programming is more than merely a labor or a discursive practice, but a way

of life––a behavioral pattern that inscribes itself not only on the minds, but on the bodies, of

programmers. The iterative nature of programming entwines the human in a technical apparatus

driven by a (vicious) feedback cycle. Programmer-code form an information-processing system:

Our analysis is therefore cybernetic in Norbert Wiener’s sense of the term––the study of

feedback in self-regulatory systems, of control and communication in animal and machine. 101

This system is a species of the machine-human hybrid Donna Haraway calls the “cyborg,” a

figure for a condition of subjectivity she, writing in 1985, extended to all living in the late

twentieth century. 102

 The descriptions above emphasize that this relationship to the machine induces a

neurological and physical pathology in the programmer that implies a degeneration from human

to android. This is the programmer as gambling or drug addict, the kind of postmodern subject,

“jacked into late capitalism’s network of cybernetic communications,” that Mark Fisher, in his

1999 dissertation, traces through what he calls the “gothic materialist” media and theory of the

late twentieth century. It is reminiscent of David Cronenberg’s Videodrome, in which a male 103

television producer’s “body literally opens up––his stomach develops a massive, vaginal slit––to

accommodate a new videocassette ‘programme.’ Image addiction and image virus reduce the

subject to the status of videotape player/recorder; the human body mutates to become part of the

massive system of reproductive technology.” This is a prosthetized subject, emptied of both 104

interiority and organs, hooked up to the material and economic flows of global capitalism,

castrated and penetrated, traversed by the media and technology it consumes intravenously.

 See Norbert Wiener, Cybernetics, or Control and Communication in the Animal and the Machine 101

(Cambridge: MIT Press, 1948).
 See Donna Haraway, “A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the 102

Late Twentieth Century,” Manifestly Haraway (Minneapolis: University of Minnesota Press, 2016).
 Fisher draws on “cybernetic theory-fictions” including J.G. Ballard’s Crash, Jean Baudrillard’s 103

“Ecstasy of Communication,” Philip K. Dick’s Bladerunner, and Jean-François Lyotard’s The
Postmodern Condition. See Fisher, Flatline.

 Steve Bukatman, “Who Programs You: The Science Fiction of the Spectacle?,” in Annette Kuhn, 104

ed., Alien Zone: Cultural Theory and Contemporary Science Fiction Cinema, London: Verso, 1990,
206, cited in Fisher, Flatline, 18.

54

 Weizenbaum distinguishes this condition of “hacking” from the methodical “work” of the

engineer: The satisfaction of the latter “comes from solving a substantive problem, not from

having bent a computer to his will.” Hackers, unlike engineers, “play” programming like a 105

gambler, in what is a struggle for power, rather than an exercise of knowledge. Chun draws on

Weizenbaum’s distinction to establish her own division between (systems) programmer and the

mere user of modern languages, who fetishizes his high-level source code by ascribing a false

causal power to it (when the real causality lies in machine code). As discussed in Chapter 1, 106

for Chun, this fetishization of source code constitutes its ideological nature, and the degeneration

of programmers into users is, therefore, highly concerning. The high-level language programmer,

like the user of graphic software or player of a video game, is duped by an illusionistic interface

that obscures reality. In fact, as Fisher points out, such uneasiness over non-knowledge (of bugs,

of the machine itself) embedded in programming is already present in the earliest work on

cybernetics. Wiener’s 1964 God & Golem, Inc, published decades before the advent of the high-

level languages Chun condemns, casts computer code as dangerous sorcery accomplished via

“black spells.” Fisher summarizes: 107

What, according to Wiener, magic spells have in common with code is that the power
any user accrues by running them depends upon their giving up ‘control’ to sequenced
programs which may have a very different effect than the user imagines, or anticipates…
Sorcery is ‘two-edged’ because, like cybernetic machines, it awards power––or
control––only to the degree that it demands control be given up by the individual
subject; the circuit, the cybernetic loop, takes over. 108

For Weizenbaum, Chun, and Wiener, the unknowability of the written code makes programming

about a struggle for power with the machine, in which seeking to blindly dominate or “hack”

code also means ceding control to its structuring of the programmer’s subjectivity into a

cybernetic input/output feed.

 Weizenbaum, Computer, 117. 105

 Chun, Programmed, 48-53. See also: “On ‘Sourcery,’ or Code as Fetish,” Configurations (vol. 106

18:3): 299-324.
 Norbert Wiener, God & Golem, Inc. (Cambridge, MA: MIT Press, 1964), 65. cited in Fisher, 107

Flatline, 109.
 Fisher, Flatline, 107-108. 108

55

 These writers explicitly cast the problem of programming in terms of knowledge and

power––which accords with the Foucauldian concept of subjectivity we will pursue in this

chapter. But I disagree with their characterization of these two forces in relation to programming.

For them, non-knowledge of the machine makes pressing “run” a throw of the dice. But 109

whereas the results of a gambler’s game are unknowable because they are determined by pure

chance, the functioning of a program is totally deterministic. Bugs arise because the programmer

is frequently unable to fully comprehend this functioning or its effects on certain edge cases, but

his task is to grasp the mechanisms of causality to whatever level is adequate to the problem he

would like to solve. Failure to correctly trace a causal relation is not equivalent to ignorance of

its existence: Programming is a reckoning with this former kind of non-knowledge.

 Equally, I see no reason why the computer-coder relationship ought to be dramatized as

an agonistic struggle for domination, rather than a reciprocal cooperation, a mutually constituted

flow-of-control in a heterogeneous system. This is not to evacuate programming of power

relations, or political implications, but to preserve a point that Fisher clarifies in relation to

Wiener’s cybernetics: “control is distinguished from domination, since it is immanent to the

system––the machine corrects itself.” Programming is neither a master-slave relationship nor, 110

like chess, a war between opposing sides; the concept of domination implies a linear border

between self and machine that precludes the possibility that programmers can craft a more

imaginative geometry of subjectivity: a shape as torsional as the diagrams of computation itself.

This incorporation is enabled precisely by the asymptotic movement towards understanding the

machine by which programming is animated. What interests me is neither the elevation of the

programmer to a God or Father whose words are transposed immediately into action, nor his

demotion to slavery to machine (Wiener) or false consciousness (Chun), but a careful

consideration of the ways in which the materiality and opacity that insist in coding can allow the

 Weizenbaum devotes several pages to this metaphor. Although I disagree with his diagnosis of 109

hacking, I find his observations on the incomprehensibility of programs elsewhere in the book more
convincing. In particular, he points to the problem of programming large systems that endure over
time: In the absence of the project’s original engineers, each of which only contributed to a small
portion of the program, one is left with a nearly incomprehensible system (Computer, 232-235). Here
we see the differences in analysis that would be necessitated by a broadening of the scale at which we
are considering programming and its applications.

 Fisher, Flatline, 22. Emphasis mine. 110

56

programmer to intentionally and intelligently––rather than as an “out-of-control addict”––

incorporate an external discourse into their own.

 My contention with Chun’s argument is not that there is no difference between computer

programming and the casual use of software like Word. It is true that digital technologies are, for

many, a kind of mystified (phonocentric) “speech-to-text” software. Derrida illustrates this via a

description of his own perplexity in the face of word-processing software (again, with an

invocation of magic or the occult): “I know how to make it work (more or less) but I don’t know

how it works. So I don’t know, I know less than ever ‘who it is’ who goes there…[people] rarely

know, intuitively and without thinking––at any rate, I don’t know––how the internal demon of

the apparatus operates.” Nor do I deny that the history of computing has introduced more and 111

more layers of mediation between programmer and hardware. My issue is with Chun’s implicit

eliding of hardware with technicity itself, and her related claim that such mediations induce

passivity, stupidity, or a de-skilling of programming. (The bad work of “hacking” is possible no

matter the medium, that is to say, even in a systems language.) Although my arguments are

illustrated via case studies in C or Python––languages that will, no doubt, eventually become

obsolete ––my argument has been that programming, independent of any specific language, is 112

about encountering the fact, and thinking within the limits, of mediation itself. The programmer,

in and through their task, tries to make out who it is who goes there, in their machine––in

Simondon’s terms, technical knowledge, rather than mystified work. It is an operation in which

the limits of one’s knowledge, the difficulty of language, materialize in the very attempt to

“execute” the written.

 This linking of non-knowledge with loss of bodily autonomy and invasion by or

submission to a machinic Other ultimately expresses an anxiety over mediation, technology, and

writing itself. The programmer-as-addict recalls a discourse as old as the Phaedrus, in which

Socrates compares writing to a drug. This pharmakon, as Derrida writes, is a “philter, which acts

as both remedy and poison,” a “charm” or “power of fascination” that “introduces itself into the

 Derrida, “Word,” 23. 111

 See, for example, former Apple UI designer Bret Victor’s Dynamicland: a research project 112

dedicated to removing computer programming entirely from language, and into the physical world.
“Dynamicland,” Dynamicland, accessed March 31, 2020, https://dynamicland.org/.

57

https://dynamicland.org/

body of [Plato’s] discourse with all its ambivalence.” Chun’s condemnation of the gradual 113

demotion of programmers into users echoes Plato’s censure of the Sophists. Writers are already

(drug) users. Algorithms are often compared to recipes; here, they are a recipe of the same 114

kind as writing. Any manipulation of forms and representations is therefore a kind of witchcraft

or potion-making, and the occult operations of the pharmakon, which functions “like a cosmetic

concealing the dead under the appearance of the living,” is, for Plato, a body-horror story as

grotesque as Cronenberg’s Videodrome: Unlike the living organism of logos, of speech, writing is

an undead perversion that calls into question the authority of the Father and natural

reproduction. 115

 I reference Derrida’s reading of Plato partially in order to divorce the problem of

programming from postmodern anxieties over digitality or the gothic pallor of cybernetic

aesthetics, and to situate it in relation to the more general question of technicity and writing.

Moreover, Plato’s pharmakon––of Egyptian origin––indexes a certain foreignness or

unknowability that we find also in the opacity of the machine’s operation. This unknowability, as

we will see, leads to a distancing from self-identity via the denaturalization of one's thoughts and

representations. “The pharmakon makes one stray from one’s general, natural, habitual paths and

laws.” The unknowability of code, in this way, allows programming to surpass the merely 116

teleological. Hacking (as opposed to engineering) is, in Chun’s words, “a technique, a game

without a goal and thus without an end” that allows programming to be “not simply the

production of a commercial (or contained) product” but rather, like a drug, “something endless

that always leads us pleasurably, as well as anxiously, astray,” 117

Reading and surprise: Bugs as symptoms

The pharmakon leads us back to the question of writing and reading, and to examine more

closely the particular constellation of relations at play in the “use” of programming. As we have

 Jacques Derrida, Dissemination, trans. Barbara Johnson (Chicago: University of Chicago, 1983), 113

70.
 Chun, Programmed, 46.114

 Derrida, Dissemination, 142; 79-80. 115

 Ibid., 70. 116

 Chun, Programmed, 49. Chun interprets this “surplus pleasure” of code through the Marxist 117

framework of commodity fetishism.

58

seen, although programming has an end-goal, the nature of problem-solving cannot be collapsed

into the linear execution of a command. The persistence of bugs gives rise to a recursive writing

process: Programming’s workflow is structured by a cyclical relationship of writing-and-running

that gradually (sometimes, asymptotically) reaches a correct result via the programmer’s

incorporation of feedback from her machine. This feedback––whether in the form of error

messages, values printed to a terminal window, or the running of a simulation––is the result of

the machine’s reading of the programmer’s text. The programmer must then interpret the product

of this reading, and assess whether it corresponds to her desired outcome. Since it almost always

does not, she must then return to her own text, re-reading her code in order to identify the

responsible syntactic or logical flaw, before correcting this error and re-running the program.

Programming is therefore a reading just as much as it is a writing, on the part of both machine

and human.

 This is a point on which Joseph Weizenbaum writes particularly lucidly: It is impossible

for the programmer to completely “know the path of decision-making within his own program,

let alone what intermediate or final results it will produce.” This is due to the multiplicity of 118

complex technical processes triggered by hitting run on a high-level program, especially the

lower-level chains of interpretation and transcription mechanisms that are usually invisible at a

high level. But good programming is not produced by a total understanding of the problem one

desires to solve, or the solution one has planned to implement: “Understanding something always

means understanding it at a certain level,” rather than “to its ultimate depth.” This 119

understanding, moreover, is reached “experimentally” through programming itself, rather than

prior to it.

Programming is rather a test of understanding. In this respect it is like writing; often
when we think we understand something and attempt to write about it, our very act of
composition reveals our lack of understanding even to ourselves. Our pen writes the
word ‘because’ and suddenly stops. We thought we understood the ‘why’ of something,
but discover that we don’t. We begin a sentence with ‘obviously,’ and then we see that
what we meant to write is not obvious at all […] Programming is like that. It is, after all,

 Weizenbaum, Computer, 234. Weizenbaum’s own insistence on this point of the ultimate 118

unknowability of code undoes the distinction he makes elsewhere in the book between “hacker” and
“engineer.”

 Ibid., 107-108.119

59

writing too. But in ordinary writing we sometimes obscure our lack of understanding,
our failures in logic, by unwittingly appealing to the immense flexibility of natural
language and to its inherent ambiguity. 120

Here, Weizenbaum provides a description of writing that, in simple language, accomplishes a

great deal of the comparison we began in the previous chapter. The manner in which

programming, unlike normal writing, forces us more explicitly to confront our own thinking is

through the “reading,” or interpretation, that must take place on the part of the machine. “A

computer,” Weizenbaum continues, “is a merciless critic.” Derrida might add that this occurs 121

in his writing as well (albeit perhaps in a less literal manner): “as I write, it is I who am being

read first of all by what I claim to write.” We remain agnostic to the question of artificial 122

intelligence; without anthropomorphizing the computer as “criticizing” or “thinking” at all,

however, one might characterize programming as a type of writing that must be made to

encounter an information-processing entity that is radically “other” than human. Besides the

fairly trivial fact of the rigid syntax of programming languages, Weizenbaum makes clear,

programming is difficult because the computer knows nothing of the programmer’s reality. 123

The programmer must mold (or “model”) her problem into a figure recognizable by a machine

that is like an alien from elsewhere. If the inevitability of misunderstanding plagues inter-human

communication, it is exacerbated in programming. 124

 Once she has crafted an adequate representation for her problem, it must be continually

revised. Perhaps she took a wrong turn when calculating the path of causality or flow-of-control

she has laid out, or perhaps she has failed to specify certain aspects of her model. The

programmer submits her thinking to rigorous self-examination. As Weizenbaum says, “one of the

most cogent reasons for using computers is to expose holes in our thinking.” To use 125

Althusser’s words, each bug is a “symptom” of a hidden assumption on the part of the

 Weizenbaum, Computer, 108. 120

 Moreover, “the computer’s criticism is very sharp and cannot be ignored; a program doesn’t work 121

at all, or delivers obviously wrong results.” Weizenbaum, Computer, 108-109.
 Jacques Derrida, Points…Interviews, 1974-1994, trans. Peggy Kamuf, ed. Elisabeth Weber 122

(Stanford: Stanford University Press, 1995), 66.
 Ibid., 109. 123

 Note that this is a different configuration of the problems of misunderstanding and context 124

Derrida grapples with in “Signature, Event, Context.”
 Weizenbaum, Computer, 65. 125

60

programmer, an unwitting “play on words” that causes the terrain of the program to shift under

the unwitting programmer’s feet, opening up holes. If, once compiled and run, each program is 126

a crystallization of the programmer’s thought in a technical terrain, then debugging is a series of

minute seismic shifts through reading. This reading is always a double reading: The program is

never self-identical. It exists on one level as that which the programmer wishes to do, as the

functionality that he thinks he has inscribed, and on another level as the machine’s technical

interpretation. The divergences in this hidden double meaning are often exposed through the

event of clicking run, after which, in debugging, the programmer must read one text with the

other. As Ellen Rooney emphasizes, any symptomatic reading addresses not only “‘the text itself’

but always also the other reading or what Althusser calls the problematic.” Debugging is a 127

reckoning with the other reading that is machine interpretation, and hence a “play” with the other

reader who is the machine. Rooney’s description of the Althusserian mode of critique as

constantly generating surprise is the aspect of symptomatic reading that perhaps most resonates

with programming. In “Symptomatic Reading is a Problem of Form,” citing Barbara Johnson,

she writes:

“The surprise of otherness is that moment when a new form of ignorance is suddenly
activated as an imperative.” Johnson urges us toward the “surprise encounter with
otherness” that will “lay bare some hint of an ignorance one never knew one had,” that
is, pose a question that reorganizes reading on another terrain and changes “the very
nature of what [we] think [we] know.” No reader commands this process; she is its
symptom, herself a surprising “reading effect” in an encounter with the other reader, one
who cannot stay on script. 128

This passage shows the relationship between the reading of an other and one’s own self-

transformation that is at work in debugging. Here, the surprise of a bug is similarly the exposure

of the programmer’s ignorance, serving as an impulse to rethink, re-read, and revise one’s text.

Although the machine may have its own script, the dialog established with the programmer is

 Althusser, Reading, 24. 126

 Barbara Johnson, “Nothing Fails like Success,” in A World of Difference (Baltimore: Johns 127

Hopkins University Press, 1987), 11; 15, quoted in Ellen Rooney, “Symptomatic Reading is a
Problem of Form,” in Critique and Postcritique, ed. Elizabeth Anker and Rita Felski (Durham: Duke
University Press, 2017), 131.

 Ibid., 134. 128

61

never predictable. We will now track the effects the “other reading” has on the programmer’s self

by following the Althusserian topology, again, through Deleuze, Foucault, and the diagram. 129

The Superfold

Towards the end of Foucault, Deleuze describes a particular kind of diagram he calls the “fold.”

The fold is the manner through which subjectivation is carried out: “the inside as an operation of

the outside,” in which “the relations of the outside [are] folded back to create a doubling,

[allowing] a relation to oneself to emerge, and constitute an inside which is hollowed out and

develops its own unique dimension.” For Deleuze, “Foucault’s fundamental idea is that of a 130

dimension of subjectivity derived from power and knowledge without being dependent on

them.” This figure for a non-innocent subjectivity inextricable from the operations of power, 131

neither self-identical, pre-technological, nor whole, looks like our character of the cyborg or

pharmakon-imbibing programmer. Deleuze makes clear that folding, once again, is the work of

creating a new kind of shape that is unimaginable from the perspective of Euclidean space, in

which:

every inside-space is topologically in contact with the outside-space… this carnal or vital
topology, far from showing up in space, frees a sense of time that fits the past into the
inside, brings about the future in the outside, and brings the two in confrontation at the
limit of the living present. 132

Here, time and space, as with the programmer’s chronopoetic diagrams or Luciana Parisi’s

algorithmic topologies, are co-articulated into a non-linear, non-Cartesian figure. One must note

that, in the context of Foucault’s archaeology, the “past” Deleuze references seems best

understood as a macroscopic dimension, referring to the manner in which a subject enfolds the

historically specific diagram in which he moves. The “future” is a time-place in which one

becomes Other than what one is. Our analysis of programming in Chapter 1 understood “time” 133

as a material resource given a sort of figural plasticity and subjected to molding by the

 And we will open up the divergences between programming and symptomatic reading in the 129

conclusion.
 Deleuze, Foucault, 97; 100. 130

 Ibid., 101. 131

 Ibid., 119. 132

 Deleuze, “Dispositif,” 345-46.133

62

programmer. Our leveling of these two time-scales allows us to create an isomorphism between

them, but, later on, we will ask after what is lost in such a substitution of the technical for the

human-historical.

 The particular features of this fold diagram must be continually made anew. In the

conclusion to Foucault, Deleuze wonders about the form of subjectivity of our time: it might be

“something like the Superfold, as borne out by the foldings proper to the chain of the genetic

code, and the potential of silicon in third-generation machines.” We note Deleuze’s reference 134

to cybernetics, and, without hewing to the particulars of Deleuze’s analysis of Nietzsche’s

superman, will take this provocation of the superfold as a jumping-off point to imagine

programming as one method of constructing such a twenty-first century figure of subjectivity.

For Deleuze, folding is also a figure for what it means to “think”; through this analysis,

therefore, we will also once more arrive at a comparison between programming and the writing

and reading of the critic. 135

Technologies of the Self

Foucault’s own concept for subjectivation is the “technology of the self,” a type of “technique”

with which he became increasingly preoccupied in his later work. As he explained at a lecture at

Dartmouth College in 1980, while “analyzing the experience of sexuality, I became more and

more aware that there is in all societies” another type of technique, other than the techniques of

production, signification, and domination, that “permit individuals to effect, by their own means,

a certain number of operations on their own bodies, on their own souls, on their own thoughts, on

their own conduct, and this in a manner so as to transform themselves, modify themselves, or to

attain a certain state of perfection, of happiness, of purity, of supernatural power, and so on.” 136

He would primarily explore this idea through a study of practices of “care of the self” (epimeleia

heautou) in late Antiquity and early Christianity. This definition confronts us with several

 Deleuze, Foucault, 131. 134

 Ibid., 118. 135

 Michel Foucault, About the Beginning of the Hermeneutics of the Self: Lectures at Dartmouth 136

College, 1980 (Chicago: University of Chicago, 2015), 25.

63

differences between programming and the practices Foucault examines that, for us, structure

rather than preclude their comparison.

 First: Foucault’s techniques are more or less explicitly constructed as methods of self-

transformation by their practitioners. If programming involves such a process of subjectivation, it

is only as a by-product or surplus effect of its stated goal (of building a software tool, regulating

communication of distributed systems, etc). But here we might recall that our account of

programming is, in a sense, that of a deviant pleasure: of “a technique, a game without a goal

and thus without an end” that exceeds “the production of a commercial (or contained)

product.” So while programming may not be discursively constructed as means of self-137

transformation, the qualities we have emphasized here, including a certain aesthetic craft of

diagramming and, more importantly, “dialogue” with the machine, establish that the ends of

programming exceed either the execution of a command or the realization of a goal.

 Moreover, it is initially unclear to what extent the programmer operates on their “self” at

all. In another lecture at Dartmouth several weeks later, Foucault explains that by self he means

“the kind of relation that the human being as a subject can have and entertain with himself. For

instance, the human being can be, in the city, a political subject. Political subject means he can

vote, or he can be exploited by others, and so on. The self would be the kind of relation that this

human being as subject in a political relation has to himself.” This is a recursive statement: 138

The world “self” is used in its definition. But this definition works well enough here; like

Foucault, we are not interested in un-boxing these nested pairs of self-subject that form each

“self” in order to arrive at the deepest inside. (Programming, also, employs recursive function

definitions to great effect.) Understanding programming as a technology of the self means

considering the text of the program to be a kind of externalization of the programmer’s thoughts,

of himself, that constitutes a subject-like dimension on which the programmer then operates.

Like all technologies of the self, programming passes through an intermediate in the form of its

inscription in a secondary, material-discursive technology. But, unlike the Greek forms of

epimeleia heautou, programming’s “subject” is the human as suspended in a semiotic-

 Chun, Programmed, 49. 137

 Foucault, About, 116. Emphasis mine. 138

64

technological medium, rather than in a politics or society. Indeed, Foucault does not explicitly

constrain subjecthood to the political arena. The citizen is only one example (“for instance”); the

political is like the content of an example from which we extract the formal structure. We will

return to the stakes of performing such a substitution of content––of the semiotic-technical for a

political or ethical dimension––later on.

 In emphasizing subjectivity as a discursive dimension of the self, we actually bring the

superfold closer to Foucault’s own work. In Deleuze’s reading of Foucault, which is in many

ways an abstraction from Foucault’s own historical method, it is sometimes easy to lose sight of

this fact: Across Foucault’s work, diagrams are figured, at least in part, through discourse; this is

true of the disciplinary techniques of Discipline and Punish, the incitements to confession of the

first volume of History of Sexuality, as well as the practices of virtue privileged in his later work

on the Greeks. Parrhēsia, for example, is a mode of truth-telling that Foucault traces through

several different authors and epochs. Although initially a political act––the discursive genre

through which a subordinate might address his superior, a form for “speaking truth to power”––

in Socrates’s teachings parrhēsia is generalized to a holistic “care of the self connected to the

relation to the gods, the relation to truth, and the relation to others.” In either case, parrhēsia is 139

a discursive act that retroactively induces a self-transformation: It is “a way of binding oneself to

oneself in the statement of truth, of freely binding oneself to oneself, and in the form of a

courageous act” in which “the event of the utterance affects the subject’s mode of being.” In 140

the second and third volumes of History of Sexuality, Foucault studies enkrateia, “an active form

of self-mastery, which enables one to resist and struggle, and achieve domination in the area of

desires and pleasures.” This species of care of the self encompassed, in addition to a dietetics 141

or regimen of the body, a system of reading and writing embedded in social relations:

There are the meditations, the readings, the notes that one takes on books or on the
conversations one has heard….There are also the talks that one has with a confidant,
with friends, with a guide or director. Add to this the correspondence in which one

 Michel Foucault, The Courage of the Truth (The Government of Self and Others II): Lectures at 139

the Collège de France, 1982-84, trans. Graham Burchell, ed. Fréderic Gros (New York: Picador,
2008), 91.

 Michel Foucault, The Government of Self and Others: Lectures at the Collège de France, 140

1982-83, trans. Graham Burchell, ed. Fréderic Gros (New York: Picador, 2008) 66, 68.
 Michel Foucault, The Use of Pleasure (New York: Pantheon, 1984), 64. 141

65

reveals the state of one’s soul, solicits advice, gives advice to anyone who needs it––
which for that matter constitutes a beneficial exercise for the giver, who is called the
preceptor, because he thereby reactualizes it for himself. Around the care of the self,
there developed an entire activity of speaking and writing in which the work of oneself
on oneself and communication of others were linked together. 142

In these related practices of parrhēsia and enkrateia, we find, therefore, that technologies of self,

for Foucault, always involve both reading and writing. Like programming, they involve an

askēsis, a training or set of practical exercises, embedded in discursive technologies.

SELF-EXAMINATION

We are not interested in establishing an exact correspondence between programming and any one

of the historical practices Foucault discusses. But the aspects of programming we have described

might be compared to greatest effect to the “art of self-knowledge” specific to late Antiquity.

This instantiation of the older Delphic injunction to “know thyself” involved, in addition to

testing procedures (of abstinence), a nightly “self-examination” in which one was to measure

one’s actions against certain rules of conduct. This daily accounting, described in exacting detail

in Seneca’s De ira, was less a judicial process and more like “an act of inspection in which the

inspector aims to evaluate a piece of work, an accomplished task.” One might say that, in 143

debugging, the programmer measures the performance of the program against the goals that he

had set for it. But this method of self-evaluation––in terms of ends met––does not capture the

non-teleological thinking we have ascribed to programming. A more interesting comparison

might be made to another mode of self-examination, elaborated by Epictetus. This exercise of

thinking is, like programming, a “labor of thought with itself as object.” It is 144

an examination that deals with representations, that aims to ‘test’ them, to
‘distinguish’ (diakrinein) one from another and thus to prevent one from accepting the
‘first arrival.’ ‘We ought not to accept a mental representation unsubjected to
examination, but should say, ‘Wait, allow me to see who you are and whence you

 Michel Foucault, The Care of the Self (New York: Pantheon, 1986), 51. 142

 Ibid., 62. 143

 Ibid.144

66

came’ (just as the night-watch say, ‘Show me your tokens’). ‘Do you have your token
from nature, the one which every representation which is to be accepted must have?’ 145

The task of discrimination or diakrisis is a kind of border control: stopping every representation

that comes into the mind, either allowing it to pass or rejecting it, and thereby ensuring one’s

autonomy through the mechanism of rational choice; it is both “a test of power and a guarantee

of freedom: a way of always making sure that one will not become attached to that which does

not come under our control.” 146

 Debugging requires a similar kind of second-guessing or re-reading of representations:

going through code line by line, checking whether one truly understands the manner in which the

machine will interpret what one has written. But this also shows us the primary difference

between the cyborg subjectivity and that of the Greek free man. Diakrisis involves a relation of

self to self in which one identifies and banishes the illegitimate, foreign thought––that which

does not have the appropriate “token from nature” and therefore eludes control. The cyberfold, as

we have argued, performs no such policing of borders. Nor does it involve a weighing of coins to

affirm their worth, sifting real from artificial currency––another metaphor Epictetus employs.

Neither the categories internal/external, nor natural/artificial, are relevant here. Rather,

programming is a tracing of one’s thought in a strange shape and foreign language, which one

then re-writes and re-shapes in a continuous process through which the externalization-of-self

that is the program shifts and mutates. This gradual metamorphosis therefore expresses a

different movement of self-transformation than Epictetus’s diakrisis, which merely “accepts” or

“rejects” representations (rather than operating on them), and which is ultimately aimed at a

preservation of or a return to self-identity.

PHARMACOLOGICAL DIALOGUE

In this sense, although neither is straightforward or linear, the Greek fold and the cybernetic fold

are really figures with different contours and trajectories of movement. The Hellenistic

“conversion to oneself” is a “circle,” “loop,” or “falling back”: “the subject must advance

 Epictetus, Discourses, French ed. and trans. J. Souilhé, Collection des universités de France, I, 4, 145

18; III, 16, 15; III, 22, 39 quoted in Foucault, Care, 63-64.
 Foucault, Care, 64. 146

67

towards something that is himself” in a journey that is simultaneously a return. It is an 147

Odyssey bringing man back to his homeland or origin, the successful weathering of which

enables self-mastery or self-ownership: “The soul stands on unassailable grounds, if it has

abandoned external things; it is independent in its own fortress; and every weapon that is hurled

falls short of its mark.” The subjectivation of programming involves a different kind of 148

looping: rather than a return to oneself, an externalization of oneself into an alien form which is

further transformed by a series of modifications. The manner in which self/other are related in

the Greek practices of epimeleia heautou and the cybernetic fold are, in fact, kinds of inverse

forms.

 The Greek technologies of the self always involve the discourse of an other. Practiced

within a social network, they are strengthened by conversations and correspondences with one’s

friends and peers––peers being, of course, free men of a certain political and social standing. But

the most important social bond in the care of the self is the relationship of student to teacher,

through whom the skill or tekhnē of this epimeleia heautou is transmitted. This relation, between

“technician” and pupil, was especially important in Plato, where “contemplation of self and care

of self are related dialectically through dialogue.” Later, in the Hellenistic era, dialogue would 149

be replaced by the two discursive activities of listening (to the teacher), and self-examination

through writing. This discourse received from outside is always given and incorporated with the

aim of autonomy and self-mastery. Socrates takes care of men not in order to sustain their

dependence on him, but “so that they learn to take care of themselves.” 150

 The inter-human discursive relations that enable programming are especially pertinent to

professional software engineering, in which the code one writes must be legible to human

colleagues as much as to the machine. But within the limited scope of this analysis, the discourse

of the “other” in programming is not of another human. I must note here that I use that word only

imprecisely, in a manner reminiscent of, but more general than, Derrida’s Other or Deleuze’s

 Foucault, The Hermeneutics of the Subject (Lectures at the Collège de France, 1981-82), trans. 147

Graham Burchell, ed. Fréderic Gros (New York: Picador, 2001), 248-249.
 Seneca, Letter to Lucilius, French ed. and trans. F. Préchac and H. Noblot, Collection des 148

universités de France, 5, cited in Foucault, Care, 65.
 Foucault, Technologies of the Self: Lectures at University of Vermont Oct. 1982 (Amherst: 149

University of Massachusetts Press, 1988), 32-33.
 Foucault, Courage, 110. 150

68

Outside. Our lower-case other is merely that which is not oneself––a vague definition that I

intentionally allow to bear the traces of more specific usages (the human foreigner who comes

from elsewhere, for example). Later, we will ask after the political and ethical implications of

failing to specify this concept more closely. For now, I hope that this definition might, like

Foucault’s recursive definition of “self,” be functional despite its poverty.

 The manner in which the specific nature of this other/outside does or does not figure in

our argument on “foreign discourse” can be illustrated by an anecdote from computer science

history: Joseph Weizenbaum, the computer scientist on whose accounts of programming we have

drawn, became famous in the mid-1960’s for his work on one of the first natural language

processing systems. This early chatbot, ELIZA, was designed to respond to human input in the

conversational style of a Rogerian psychotherapist, who interacts with his patient by reflecting

their language back to them. The dialogue might go something like:

USER: I haven’t been feeling well.
ELIZA: Why do you think you haven’t been feeling well?
USER: I’ve been thinking about my father.
ELIZA: Tell me more about your father.

And so on. This is a fairly easy program to write; Brown computer science students implement a

version of it in their first semester. Weizenbaum was horrified by the program’s reception by

certain sectors of the public, including a paper published in a psychiatric journal suggesting that

such a program might be actually used in therapy, and his secretary’s emotional request that he

give her some privacy while she was talking to the program, despite knowing very well that it

was only a computer. This experience would contribute to Weizenbaum’s turn to become an

early, vocal critic of artificial intelligence. Weizenbaum was concerned that naïve users might 151

believe ELIZA to be actually thinking and feeling––a problem to which we choose to remain

agnostic, instead emphasizing the fact that a user might experience the effects of psychotherapy

regardless of what kind of other the “therapist” might be. The formal structure of this dialogue

with a foreign interlocutor is what induces self-transformation: It is ultimately a technical

exercise, or askēsis.

 Weizenbaum, Computer, 2-6. 151

69

 Programming involves a similar kind of dialogue with the other; the program output

returned during debugging is like ELIZA’s pre-programmed responses. But this exercise differs

from both Greek epimeleia heautou and computer-assisted therapy in that it is oriented outwards,

rather than inwards. The subjectivation of the superfold is not a return-to-self or self-mastery, but

an externalization of one’s thoughts. Rather than being guided back to oneself by a foreign

interlocutor, this cybernetic dialogue leads one to fall deeper and deeper outside of one’s

“natural” language and into the foreign language and forms of the machine. The programmer’s

mind is not a fortress: Becoming good at programming means adapting one’s thoughts to the

patterns and rhythms of an alien technical-semiotic system, in which, in the form of the program,

they are suspended and become an object of external manipulation. In the “self-examination” of

one’s code to which one is led through this dialogue, what one encounters and operates on is

oneself, in altered form. It is therefore simultaneously a folding of the outside into the inside, as

well as an externalization.

 For the Greeks, care of the self always had a medical dimension, especially during the

Hellenistic period. Both medicine and epimeleia heautou seek to cure pathos, an illness of the 152

body and soul that “takes the form of a movement capable of carrying [the soul] away from

itself.” Programming, conversely, means intentionally swallowing the drug, medicine, or 153

poison of the pharmakon: a discourse from outside that leads one astray, out of one’s city, and

out of oneself.

OPTIMIZATION AS OIKONOMIA: GOVERNMENT OF SELF AND OTHERS

But there is another other, in addition to the technician-teacher and the machine, at work in the

technologies of both cyberfold and epimeleia heautou. The Greek Odyssey of conversion-to-self

was often described as necessitating the navigational skills of the ship’s pilot: the kybernetikos.

This metaphor of piloting was associated not only with care of the self, as well as medicine, but

also political governance. Kybernetikē would also, later, become “cybernetics.” This 154

etymology highlights that both practices follow the model in which government of self is always

 Foucault, Technologies, 31. 152

 Foucault, Care, 54.153

 Foucault, Hermeneutics, 249. 154

70

related to the government of others. Before becoming a more generalized practice, self-care and

self-mastery were essentially political technologies, meant for use by a political leader: “The

Socratic problem is how to teach the virtue and knowledge required to live well or also to govern

the city properly.” Xenophon’s Oeconomicus makes clear that “governing oneself, managing 155

one’s estate, and participating in the administration of the city” are isomorphic techniques; it is

for this reason that self-mastery is so highly emphasized. The Greek technology of the self is

therefore an economic art that takes the same form at multiple scales or scopes of its

application. 156

 Programming, similarly, through the dissemination of software products and the

construction of digital infrastructures that pattern our lives in increasingly inescapable ways, is a

government of others, and a question of economy. Establishing whether, in the case of

programming, the relationship between government of self and government of others is also

isomorphic, and on what scales, is beyond our scope. It is a question of the manner in which the

cyberfold of subjectivation intersects with, is subsumed by, or extends more macroscopic

diagrams. One direction such an analysis might take is an investigation of the diagram of

optimization. As indicated in Chapter 1, optimization is the logic that governs the distribution

and figuration of material resources in the computer; for this reason, it is perhaps one of the most

important dimensions of the “other” that the programmer folds into himself––though not the only

one. Does one find optimization at other levels, carried there by the ubiquity of digital

technologies? One might study discourses and practices around time-space constraints in other

industries or mediatic forms that rely on these technologies, or trace optimization to the practices

of self-actualization and entrepreneurship through which many technologies of the self today

become techniques of neoliberal governmentality. A more truly Foucauldian extension of this

chapter would consider more macroscopic dimensions of programming: the discourses of self-

actualization, freedom, and disruption with which tech companies communicate internally and

externally; the structure of the tech campus as a workplace; the manner in which code circulates

 Foucault, Courage, 27. 155

 Foucault, Use, 74-76.156

71

online; the technical genealogy of different platforms that are built on one another. It would 157

relate these observations to technologies’ interactions with users: the discourses of connectivity

that saturate social media, the voluntary and involuntary methods of data collection, the blurring

of the boundary between consumers and producers of digital media. Through such a series of

expansions and contractions of scope and scale, the trick would be to join up these disparate

levels with different and intersecting diagrams, preserving their discontinuities while elucidating

a broader structure.

Getting free: Going on a trip/voyage, exercise

In this chapter, we have described programming as configuring the self in a reading and writing

exercise that, in the same movement, attempts to understand and operate through the logic of a

foreign entity. This adaptation of one’s thinking to another discourse is coextensive with adapting

the machine to one’s own ends. This particular technique for folding is, perhaps, truly

pharmacological in that it serves as both remedy and poison: leading one out of the strictures of

self-identity, and into the flexible pattern of optimization.

 In the introduction to The Use of Pleasure, Foucault explains his turn away from

techniques of power to techniques of the self in studying sexuality: He was motivated by the

curiosity that “enables one to get free of oneself.” Philosophy today, he goes on, ought “to

explore what might be changed, in its own thought, through the practice of a knowledge that is

foreign to it. … At least if we assume that philosophy is still what it was in times past, i.e., an

‘ascesis,’ askēsis, an exercise of oneself in the activity of thought.” Programming as folding is 158

an askēsis of writing and reading––an exercise of oneself that leads to a transformation, in a

manner formally similar to the task of writing philosophy itself. Derrida, also, compares his

writing process to an athletic activity. The text he reads is an unmasterable horse that he is riding;

“the other thing is watching what I do and carries me off at the very moment I try all sorts of

mastering manoeuvres.” I would like to end here with a passage from an astonishingly 159

 One example of a study of code as product of a specific culture and software industry is Federica 157

Frabetti’s Software Theory: A Cultural and Philosophical Study (London: Rowman and Littlefield,
2014).

 Foucault, Use, 8, 9. 158

 Derrida, Points, 66. 159

72

prescient interview Derrida gave in 1996 on the subject of “word processing,” writing on the

computer. Derrida’s computer user is not a programmer, and the qualities of programming that

involve thinking or mental exercise are perhaps less apparent here. But this passage plays on

many of the themes we have developed in the past three chapters: the flux of forms, the diagram

that carries and exceeds us, addiction, the navigation of this torsional movement outwards. It

shows that the trajectory by which the computer user becomes alien to herself is also one in

which she becomes invisible to herself, seeing herself without seeing herself surfing this

cybernetic fold: perhaps freedom, perhaps an abdication of (political) responsibility, perhaps an

abdication of subjectivity itself.

The computer installs a new place: there one is more easily projected toward the exterior
… toward the aspect that is thereby wrested away from the presumed intimacy of
writing, via a trajectory of making alien. Inversely, because of the plastic fluidity of the
forms, their continual flux, and their quasi immateriality, one is also increasingly
sheltered in a sort of protective haven. No more outside. Or rather, we see ourselves
without seeing ourselves enveloped in the scroll or the sails of this inside/outside, led on
by another revolving door of the unconscious, and exposed to another coming of the
other. And it can be sensed, differently, for the ‘Web,’ this WWW or World Wide Web
that a network of computers weaves all about us, across the world, but also about us, in
us. Think about the ‘addiction’ of those who travel day and night in the WWW. They can
no longer do without these world crossings, these voyages by sail [à la voile], or veil [au
voile], crossing or cutting through them in its turn. 160

 Derrida, “Word,” 28. 160

73

CONCLUSION

Finally, I would like to indicate, in a rather speculative manner, some possible implications of my

argument: first by highlighting some of the problems raised by this comparison of programming

to critique, and then by considering this position in relation to a philosophy of originary

technicity.

The content of critique?

In Chapter 1, I described programming as the creation of figures of time and space, or

diagramming, and in Chapter 2, as a writing that constantly materializes the structure of

mediation. In Chapter 3, programming is a technology of the self. Each of these descriptions is

also a comparison to the “shape” of thinking of certain philosophers or critics: Althusser,

Deleuze, Derrida, Foucault. I have insisted that this comparison is one of form, as if the writing

of these thinkers exhibited a kind of pattern that is isomorphic with the operations of

programming. But perhaps I have constructed a formal fallacy, a “play on words” that has

unwittingly shifted the terrain, pulling the rug out from under both critique and programming,

leaving them suspended and decontextualized, and resulting in an evacuation of the political

meaning of either practice. If so, the least I can do is not “spirit away the corpse” of what has

been killed in this substitution. 161

 The differences between programming and the work of the 20th century French

philosophers consulted here are obvious and might be counted dozens of different ways. The

technologies of the self Foucault describes are explicitly aimed at ethical self-transformation;

programming is not. Nor is it a parrhesiastic mode of “speaking truth to power”; in fact, unlike

scientific or mathematical discourses, programming holds no relation to “truth” at all. Unlike

Foucault’s archaeology or genealogy, it is not historical. Derrida’s figures of speech are deployed

 Althusser, Reading, 40.161

74

in the service of a critique of a Western metaphysics of presence; programming’s are not. In

relation to symptomatic reading, Rooney highlights that, “for Althusser, a problematic is the

structure of presuppositions that constitutes a discourse, its enabling conditions, historical and

political; the problematic defines the objects within a field, fixes lines of inquiry, and delimits

the form of the solutions thinkable within its limits.” We have described the terrain or 162

“problematic” of programming as the semiotic structures constructed by the programmer and/or

defined by the machine’s field of interpretation. While programming involves a questioning,

interpretation, or manipulation of this semiotic terrain, it does not necessitate questioning of that

larger problematic: the diagram of optimization, the historical, political, and economic mode of

production that create the condition for software engineering, and so on.

 If programming follows some of the right “forms” of reading and writing, then, it is on

the wrong topic. One might speculate whether the relevant differences are ones of “content.” In

this case, the question would concern the possibility of a separation of form and content. To do a

symptomatic reading, does the book have to be Capital? Does the “subject” in a proper

technology of the self have to be political, its goals ethical? Does ethical self-transformation

require the “other” to be human? Or can it also be an animal? Or can it also be a machine? My

comparison of programming to critique has swept these questions aside. Perhaps the attempt to

extract a kind of abstract form or structure of critique has been wholly misguided. In a 1971

lecture on the subject “What is Critique?”, Foucault begins by emphasizing the apparent

contradictions posed by attempting to answer this question.

One will be surprised to see that one tries to find a unity in this critique, although by its
very nature, by its function…it seems to be condemned to dispersion, dependency, and
pure heteronomy. After all, critique only exists in relation to something other than
itself. 163

The “something other than itself” to which critique responds is a specific form of

governmentality. It addresses the question of “how not to be governed like that, by that, in the

name of those principles, with such and such an objective in mind and by means of such

 Rooney, “Symptomatic,” 133. Emphasis mine. 162

 Michel Foucault, “What is Critique?” trans. Lysa Hochroth, in The Politics of Truth, ed. Sylvère 163

Lotringer and Lysa Hochroth (New York: Semiotexte, 1997), 25.

75

procedures, not like that, not by them.” In this sense, programming as I have described it, in 164

absence of any political content, can not be like societal critique, even in a merely “formal” or

“isomorphic” manner, because the forms of critique are inextricable from its object or content;

my folly here is that of classic Aristotelian hylomorphism. Such an understanding of critique, in

which form of expression and object of critique are co-adapted, might be best illustrated by the

Derridean modality of deconstruction; the manipulations to which Derrida submits his signs

enact his linguistic and philosophical critique of the Western metaphysics of presence, of

logocentrism, and so on.

 One might object that programming can be used to build a technology that opposes, say,

capitalism or the state. But this is irrelevant to a description of programming “in general,” as it

merely addresses the applications, rather than the formal and technical imperatives, of

programming. Moreover, such a “critical” technology could be constructed following the same

formal procedures and diagrams of optimization and security as a Google product; although the

“content” seems correct, it does not operate through formal means married to their ends.

Conversely, one might point to uses of programming languages that subvert their intended usage

by following certain aesthetic, rather than functional criteria: code poems, for example, or coding

competitions where the aim is to write a program as confusing as possible, or with the fewest

number of characters, and so on. But besides lacking any explicit political aim, such “ironic” 165

uses of programming languages, although not entirely divorced from actual programming

practice, evade the technical considerations that define this specific kind of reading or writing––

i.e., that make programming programming.

 Foucault, “Critique,” 28. 164

 The aims of the International Obfuscated C Code Contest, for example, are: “To write the most 165

Obscure/Obfuscated C Program within the rules; to show the importance of programming style, in an
ironic way; to stress C compilers with unusual code; to illustrate some of the subtleties of the C
language.” (“Goals of the Contest,” IOCCC, accessed April 19, 2020, https://www.ioccc.org/) Code
golf is a competition to implement an algorithm with the fewest characters possible. I would add that,
even within functionality-oriented software engineering, programming produces aesthetic objects;
the figures described in Chapter 1 are one such example.

76

https://www.ioccc.org/

Irony and the (originary) technicity of critique

 Despite his reservations, Foucault does give a kind of “general definition” of critique––

but one that is equally difficult to reconcile with our description of programming. “Critique is the

movement by which the subject gives himself the right to question truth on its effects of power

and question power on its discourses of truth.” Besides the differences in content we have just 166

described–– programming itself does not question truth or power––we also have, here, a formal

dissimilarity. The “movement” Foucault describes here is that of the old Greek technologies of

the self: a reflexive self-allocation, a “conversion to self” that sets up an impenetrable subject. In

Chapter 3, we emphasized that the subjectivation of programming follows an opposite trajectory:

outwards, not “back home.” Indeed, in this lecture, Foucault says that critique is a virtue. 167

“Virtue” is virtù, masculinity, the Greek technology of the self found in the self-reflexive

enkrateia: “In this ethics of men made for men, the development of the self as an ethical subject

consisted in setting up a structure of virility that related oneself to oneself.” Here it is 168

important to remember that this virtuous practice on the self is inextricable from the isomorphic

“relation of domination, hierarchy, and authority that one expected, as a man, a free man, to

establish over his inferiors.” If, in my comparison of programming to Foucauldian critique, I 169

have evaded this modality of self-reflexive insubordination, it is in part because I find this kind

of “virtue” a rather tough pill to swallow. In fact, it seems to me that, if the programmer-as-

subject does give “himself the right to question truth on its effects of power and question power

on its discourses of truth,” then this modality is easily reconcilable with what is most destructive

in Silicon Valley’s mantra of “move fast and break things”: the heedless “innovative disruption”

 Foucault, “Critique,” 32. 166

 Ibid., 25. 167

 Foucault, Use, 83. 168

 Ibid. 169

77

of existing practices and institutions that goes hand-in-hand with a reckless disregard for the law,

the privacy of citizens, and so forth. 170

 Although the two are intimately related, I have chosen to emphasize the

“pharmacological” strand of Foucault’s thought––the impulse to “get free of oneself” via a

foreign discourse––rather than self-reflexivity. Judith Butler ends her “What is Critique? An

Essay on Foucault’s Virtue” with a description of an instance of Foucault’s own performance of

critique in the same 1971 lecture. She describes how, in response to a question on the nature of

the “will not to be governed,” he says that it is:

‘like an originary freedom’ and something ‘akin to the historical practice of
revolt’ [Butler’s emphasis]. Like them, indeed, but apparently not quite the same. As for
Foucault’s mention of ‘originary freedom,’ he offers and withdraws it at once. … What
discourse nearly seduces him here, subjugating him to its terms? And how does he draw
from the very terms that he refuses? What art form is this in which a nearly collapsible
critical distance is performed for us? And is this the same distance that informs the
practice of wondering, of questioning? 171

This gesture, Butler says, through which Foucault flirts with the idea of an “originary freedom”

that, as a transcendental value, is antithetical to his archaeological or genealogical project, is a

virtuous act of courage in which Foucault risks himself as a subject in relation to his own

discourse, “at the limit of the epistemological field” that he has himself constructed. This

performance is exemplary of the aesthetics of existence Foucault calls the technology of the self.

As a courageous act of speech, it is like the Greek parrhēsia, but a kind of parrhēsia that leads

out of one’s own subjectivity, rather than back to it.

 No doubt, computer programming is not critique. But, if we say that it is “like” critique,

where does that leave us? Or rather, where does it leave critique? Here I am reminded, also, of

Donna Haraway’s opening to the “Cyborg Manifesto,” in which she explains that the cyborg is

 “Innovative disruption” was coined by Harvard Business School professor Clayton Christensen in 170

the 1990’s, and has since served as a Silicon Valley buzzword. (Nitasha Tiku, “An Alternative
History of Silicon Valley Disruption,” Wired, October 22nd, 2018, https://www.wired.com/story/
alternative-history-of-silicon-valley-disruption/). “Move fast and break things” is Mark Zuckerberg’s
now-famous motto (Hemant Taneja, “The Era of ‘Move Fast and Break Things’ is Over,” Harvard
Business Review, January 22nd, 2019, https://hbr.org/2019/01/the-era-of-move-fast-and-break-things-
is-over).

 Judith Butler, “What is Critique? An Essay on Foucault’s Virtue,” transversal texts, May 2001, 171

https://transversal.at/transversal/0806/butler/en.

78

https://www.wired.com/story/alternative-history-of-silicon-valley-disruption/
https://www.wired.com/story/alternative-history-of-silicon-valley-disruption/
https://hbr.org/2019/01/the-era-of-move-fast-and-break-things-is-over
https://hbr.org/2019/01/the-era-of-move-fast-and-break-things-is-over
https://transversal.at/transversal/0806/butler/en

an ironic political myth: “Irony is about contradictions that do not resolve into larger wholes,

even dialectically, about the tension of holding incompatible things together because both or all

are necessary and true. Irony is about humor and serious play. It is also a rhetorical strategy and a

political method.” If we say, while delighting in its impiety but also very seriously, that 172

programming is like critique, then perhaps this is also a rhetorical gesture that might lead to a

kind of strategic re-positioning of critique, highlighting precisely its status as strategy, its

functional or technological qualities.

 As Foucault says in “What is Critique?”, critique is an “instrument, a means for a future

or a truth that it will not know nor happen to be.” Although the emphasis of the lecture lies 173

elsewhere, this formulation is nevertheless remarkable because it is in direct contrast to the

tradition of thought exemplified by Horkheimer’s “Critique of Instrumental Reason.” The critic,

like the programmer, is a user. Understanding critique as technological makes it coextensive with

the whole range of strategies through which living things adapt or respond to their circumstances

via technology. This does not entail a reduction of human behavior to mechanistic response;

rather, it speaks to the manner in which humanity emerges only through and with technology. 174

Foucault’s teacher, Georges Canguilhem, makes the non-mechanistic character of such an

assertion clear via an analogy to a discursive situation: “The relationship established between the

living and its milieu is like a debate in which the living brings its own norms of appreciating the

situation, where it is in command of the milieu and accommodates itself to it.” The 175

relationship between life and milieu is neither antagonistic nor unidirectionally deterministic;

rather, both inform the other. Similarly, the programmer, “in conversation” with the technological

milieu (the computer), both imposes his own will on it and must adapt himself to it. This is what

it means to fold the outside into the inside, and, as a critic, to develop a strategic response to

power without being able to step outside of its effects. Programming is like reading and writing

 Haraway, “Cyborg,” 1. 172

 Foucault, “Critique,” 25. 173

 A position perhaps developed most extensively and explicitly by Bernhard Stiegler, following 174

Derrida, under the concept of “originary prostheticity.” See, for example: “Who? What? The
Invention of the Human,” Technics and Time, 1: The Fault of Epimetheus, trans. George Collins and
Richard Beardsworth (Stanford: Stanford University Press, 1998), 134-179.

 Georges Canguilhem, “The Living and its Milieu,” trans. John Savage, Grey Room (vol. 3: Spring 175

2001), 21. Emphasis mine.

79

in that all three are animated by a certain technological orientation: a specific question or

problem, a definite constellation of power, the immersion within and creation of a terrain. Critics

have labelled the philosophers discussed here––Foucault, Derrida, Deleuze––as thinkers of

“originary technicity.” Our re-enactment of the scene Butler examines vis-à-vis Foucault 176

might, therefore, be to say: critique is something like an originary technicity, something akin to

the practice of computer programming.

 If, here, a comparison of programming and critique on the formal level has been made

possible by a certain evacuation of the political content of the latter, then an appreciation of the

significance of this elision entails recognition of another manner in which the two are similar: as

technological practices that are always a specific, strategic response. The rhetorical, quasi-ironic

positioning of programming as reading, writing, or critique might allow one to develop new

directions in which critique might move in relation to the semiotic forms and diagrams of power

of the digital age. We began Chapter 2 with a description of the programmatic disruptions to

which Derrida submitted his writing of Circonfession and The Post Card. Such techniques of re-

formatting, cutting and pasting, and so on, as he acknowledged in 1995, are no longer

“disobedient,” semiotically or politically, in the time of digital technology. “It was theorized and

it was done––then.” Rather, “we must invent other ‘disorders,’ ones that are more discreet, less

self-congratulatory and exhibitionist, and this time contemporary with the computer.” In order 177

to construct such formal innovations, however, one must first understand the forms of reading

and writing native to programming languages––to which this project has attempted to contribute.

In the same way, however, that the pleasures of programming exceed the solution of any specific

problem, in addition to any such “strategic” aims of my argument, this writing also developed

out of a desire merely to document the contorted aesthetic figures and semiotic constellations

produced in this particular mode of reading and writing. The computer diagram that scales levels

of technicity, the software supplement, the variability of materially-determined meaning, the

 See, for example: Arthur Bradley, Originary Technicity: The Theory of Technology from Marx to 176

Derrida (New York: Palgrave Macmillan, 2011). This also, of course, includes Simondon.
Althusser’s theory of ideology might also be subsumed under this concept.

 Derrida, “Word,” 25. 177

80

pharmacology of debugging––all these expressions of a foreign discourse hint, in both their

familiarity and their intoxicating strangeness, at “the possibility of a difference, of a mutation, of

a revolution in the propriety of symbolic systems” as well as a mode of subjectivity and

resistance, an aesthetic experience (for Foucault, they are the same thing), that makes us other

than what we already are. Like critique, a trip, an exercise, an “instrument, a means for a 178

future or a truth that [we] will not know nor happen to be.” 179

 Barthes, Empire, 4. 178

 Foucault, “Critique,” 25. 179

81

Thank you

Thank you so very much to Péter Szendy, for listening as well as reading, for being willing to go
along when the aim was nowhere in sight, and whose insightful guidance and dialogue both
transformed my writing and led it back to itself.

Joan Copjec’s thoughtful and meticulous interventions completely renewed this project when I
didn’t know where it could go; thank you for opening up to me so many ideas that I am happy to
know will continue to carry me in the future.

My work here is also hugely indebted to Ellen Rooney’s teaching on form and critique (faithful,
as Donna Haraway writes, “as blasphemy is faithful”), as well as to the members of the
2019-2020 Pembroke seminar, “On the Question of Critique.”

Thanks to the scores of Brown Computer Science undergraduate teaching assistants who taught
me diagramming.

And my parents, Jutta and Jim, for everything!

Most of all, thank you to the many many friends/classmates who have read, edited, and shaped
my thinking, including: Miles, Jonah, Liby, and Isabelle –– <3.

82

BIBLIOGRAPHY

Aarseth, Espen. Cybertext: Perspectives on Ergodic Literature. Baltimore: Johns Hopkins
University Press, 1997.

Althusser, Louis. Reading Capital. London: New Left Books, 1970.
Barthes, Roland. Empire of Signs. Translated by Richard Howard. New York: Hill and Wang,

1982.
Bratton, Benjamin. The Stack: On Software and Sovereignty. Cambridge, MA: MIT Press, 2015.
Butler, Judith. “What is Critique? An Essay on Foucault’s Virtue.” transversal texts. May 2001.

https://transversal.at/transversal/0806/butler/en.
Canguilhem, Georges. “The Living and its Milieu.” Translated by John Savage. Grey Room (vol.

3: Spring 2001): 7-31.
Chun, Wendy Hui Kyong. “On Software, Or the Persistence of Visual Knowledge.” Grey Room

(vol. 18: Winter 2004): 26-51.
––––––. “On Sourcery, or Code as Fetish.” Configurations (vol. 18:3): 299-324.
––––––. Programmed Visions: Software and Memory. Cambridge, MA: MIT Press, 2011.
––––––. Updating to Remain the Same: Habitual New Media. Cambridge, MA: MIT Press, 2016.
Deleuze, Gilles. Foucault. Translated by Seán Hand. Minneapolis: University of Minnesota

Press, 1988.
––––––. Two Regimes of Madness: Texts and Interview 1975-995. Translated by Ames Hodges

and Mike Taormina. Edited by David Lapoujade. Cambridge, MA: MIT Press, 2006.
Derrida, Jacques. Dissemination. Translated by Barbara Johnson. Chicago: University of

Chicago Press, 1983.
––––––. “Letter to a Japanese Friend,” in Derrida and Différance. Edited by David Wood and

Robert Bernasconi. Evanston: Northwestern University Press, 1988.
––––––. Limited Inc. Translated by Samuel Weber and Jeffrey Mehlmann. Evanston:

Northwestern University Press, 1988.
––––––. Of Grammatology. Translated by Gayatri Chakravorty Spivak. Baltimore: Johns

Hopkins University Press, 2016.
––––––.“Paper or Myself, You Know… (new speculations on a luxury of the poor).” Translated

by Keith Reader. Paragraph (vol. 21:1): 1-27.
––––––. Points…Interviews, 1974-1994. Translated by Peggy Kamuf. Edited by Elisabeth Weber.

Stanford: Stanford University Press, 1995.
––––––.The Post Card: From Socrates to Freud and Beyond. Translated by Alan Bass. Chicago:

University of Chicago Press, 1987.
––––––. “Typewriter Ribbon: Limited Ink (2) (“within such limits”).” Translated by Peggy

Kamuf. Material Events: Paul de Man and the Afterlife of Theory. Edited by Tom Cohen,
et al. Minneapolis: University of Minnesota Press, 2001.

––––––. “White Mythology: Metaphor in the Text of Philosophy.” Translated by F.C.T Moore.
New Literary History (vol. 6:1): 5-74.

83

https://transversal.at/transversal/0806/butler/en

––––––. “The Word Processor.” Paper Machine. Translated by Rachel Bowlby. Stanford:
Stanford University Press, 2005. 19-32.

“Dynamicland.” Dynamicland. Accessed March 31, 2020. https://dynamicland.org/.
“The Effects of Computer Programming on the Brain.” Grindd. July 5, 2013. Accessed March

31, 2020. http://www.grindd.com/blog/2013/07/the-effects-of-computer-programming-on-
the-brain/.

Eisenman, Peter. Diagram Diaries. New York: Universe, 1999.
Ernst, Wolfang. Chronopoetics, trans. Anthony Enns. London: Rowman and Littlefield, 2016.
Fazi, Beatrice. Contingent Computation: Abstraction, Indeterminacy, and Experience in

Computational Aesthetics. London: Rowman and Littlefield, 2018.
Fisher, Mark. Flatline Constructs: Gothic Materialism and Cybernetic Theory-Fiction.

Brooklyn: Exmilitary Press, 2018.
Foucault, Michel. About the Beginning of the Hermeneutics of the Self: Lectures at Dartmouth

College, 1980. Chicago: University of Chicago, 2015.
––––––. The Care of the Self. New York: Pantheon, 1986.
––––––. The Courage of the Truth (The Government of Self and Others II): Lectures at the

Collège de France, 1983-84. Translated by Graham Burchell. Edited by Fréderic Gros.
New York: Picador, 2008.

––––––. Discipline and Punish. Translated by A. Sheridan. New York: Pantheon, 1995.
––––––. The Government of Self and Others: Lectures at the Collège de France, 1982-83.

Translated by Graham Burchell. Edited by Fréderic Gros. New York: Picador, 2008.
––––––. The Hermeneutics of the Subject: Lectures at the Collège de France, 1981-82.

Translated by Graham Burchell. Edited by Fréderic Gros. New York: Picador, 2008.
––––––. Technologies of the Self: Lectures at University of Vermont Oct. 1982. Amherst:

University of Massachusetts Press, 1988.
––––––. The Use of Pleasure. New York: Pantheon, 1984.
––––––. “What is Critique?” Translated by Lysa Hochroth. The Politics of Truth. Edited by

Sylvère Lotringer and Lysa Hochroth. New York: Semiotexte, 1997. 23-82.
Frabetti, Federica. Software Theory: A Cultural and Philosophical Study. London: Rowman and

Littlefield, 2014.
Galloway, Alexander. The Interface Effect. Cambridge, UK: Polity, 2012.
––––––. “Language Wants to Be Overlooked.” Journal of Visual Culture 5 (vol. 3:2006):

316-331.
“Games.” Massey University of New Zealand. Accessed March 31, 2020. https://

www.massey.ac.nz/~mjjohnso/notes/59302/l05.html.
“Goals of the Contest.” International Obfuscated C Code Contest. Accessed April 19, 2020.

https://www.ioccc.org/.
Haraway, Donna. “A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the

Late Twentieth Century.” Manifestly Haraway. Minneapolis: University of Minnesota
Press, 2016.

84

https://dynamicland.org/
http://www.grindd.com/blog/2013/07/the-effects-of-computer-programming-on-the-brain/
http://www.grindd.com/blog/2013/07/the-effects-of-computer-programming-on-the-brain/
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.ioccc.org/

Hayles, N. Katherine. My Mother Was A Computer. Chicago: University of Chicago Press, 2005.
––––––. “Print is Flat, Code is Deep: On the Importance of Media-Specific Analysis,” Poetics

Today (vol. 25:1): 67-90.
––––––. Writing Machines. Cambridge, MA: MIT Press, 2002.
Healy, Kieran. “Fuck Nuance.” Sociological Theory (vol. 35:2): 118-127.
Hui, Yuk. On the Existence of Digital Objects. Minneapolis: University of Minnesota Press,

2016.
Joque, Justin. Deconstruction Machines: Writing in the Age of Cyberwar. Minneapolis:

University of Minnesota Press, 2018.
Kittler, Friedrich. “There is No Software.” CTheory (1995). Accessed March 31, 2020.

www.ctheory.net/articles.aspx?id=74.
Krishnamurthi, Shriram. “Scope,” Programming and Programming Languages. Accessed March

31, 2020. https://papl.cs.brown.edu/2018/
Interpreting_Functions.html#%28part._.Scope%29.

Manovich, Lev. The Language of New Media. Cambridge, MA: MIT Press, 2001.
Parisi, Luciana. Contagious Architecture: Computation, Aesthetics, and Space .Cambridge, MA:

MIT Press, 2013.
“Priority Queue (Java Platform SE 7).” Oracle. 2018. Accessed March 31, 2020. https://

docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html.
Rooney, Ellen. “Live Free or Describe: The Reading Effect and the Persistence of Form.”

differences 21 no. 3 (2010): 112-139.
––––––. “Symptomatic Reading is a Problem of Form.” Critique and Postcritique. Edited by

Elizabeth Anker and Rita Felski. Durham: Duke University Press, 2017). 127-152.
Simondon, Gilbert. On the Mode of Existence of Technical Objects, trans. Cecile Malaspina and

John Rogove. Minneapolis: University of Minnesota Press, 2016.
Taneja, Hemant. “The Era of ‘Move Fast and Break Things’ is Over.” Harvard Business Review.

January 22nd, 2019. https://hbr.org/2019/01/the-era-of-move-fast-and-break-things-is-over.
Tiku, Nitasha. “An Alternative History of Silicon Valley Disruption.” Wired. October 22nd,

2018. https://www.wired.com/story/alternative-history-of-silicon-valley-disruption/.
van Zanten, Boris Veldhuijsen. “The very first recorded computer bug,” TNW. Sep 18, 2013.

https://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug.
Weizenbaum, Joseph. Computer Power and Human Reason: From Judgment to Calculation.

New York: W.H. Freeman, 1976.
Wiener, Norbert. Cybernetics, or Control and Communication in the Animal and the Machine.

Cambridge, MA: MIT Press, 1948.

85

http://www.ctheory.net/articles.aspx?id=74
https://papl.cs.brown.edu/2018/Interpreting_Functions.html#%28part._.Scope%29
https://papl.cs.brown.edu/2018/Interpreting_Functions.html#%28part._.Scope%29
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://hbr.org/2019/01/the-era-of-move-fast-and-break-things-is-over
https://www.wired.com/story/alternative-history-of-silicon-valley-disruption/
https://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug

Images

Doeppner, Thomas W. “C Pointers.” Lecture slides for CSCI0330: Introduction to Computer
Systems, Fall 2017.

“Games,” Massey University of New Zealand, accessed March 31, 2020, https://
www.massey.ac.nz/~mjjohnso/notes/59302/l05.html.

“How to perform recursion operation in Java,” CodingSec, accessed March 20, 2020, https://
codingsec.net/2016/09/perform-recursion-operation-java/.

 “Priority Queue Java,” JournalDev, accessed April 17, 2020, https://www.journaldev.com/
16254/priority-queue-java.

Wong, Stephen. “Eclipse Debug Perspective Screen Shot,” COMP310, Rice University, 2017,
accessed April 10, 2020, https://www.clear.rice.edu/comp310/Eclipse/debugging.html.

86

https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://www.massey.ac.nz/~mjjohnso/notes/59302/l05.html
https://codingsec.net/2016/09/perform-recursion-operation-java/
https://codingsec.net/2016/09/perform-recursion-operation-java/
https://www.journaldev.com/16254/priority-queue-java
https://www.journaldev.com/16254/priority-queue-java
https://www.clear.rice.edu/comp310/Eclipse/debugging.html

	Diagram, Debug, Fold: Programming as a Form of Critique
	TABLE OF CONTENTS
	INTRODUCTION
	A specification of scale: What is programming?

	CHAPTER 1. SCALE AND DIAGRAM
	Programming as figuration
	Layers, parts and wholes
	Asymmetric binaries, heteromorphism
	Abstraction (Genus/species)
	Figure 2
	Figure 1
	Figure 3
	Figure 4
	The work of scaling
	Figure 5
	Figure 6
	Economies of time and space
	* * *

	Topologies and terrain
	The Diagram

	CHAPTER 2. BUGS AND MATERIALITY
	Supplement, support, software
	Figure 7

	Variables and polyvocality
	Memory address: Meaning and materiality
	Figure 8
	Meaning in space and time
	Figure 9

	Failure: Bugs and edge cases

	CHAPTER 3. THE USER: TECHNOLOGIES OF SELF
	Runtime and recursion; the pharmakon
	Reading and surprise: Bugs as symptoms
	The Superfold
	Technologies of the Self
	Self-examination
	Pharmacological dialogue
	Optimization as oikonomia: government of self and others

	Getting free: Going on a trip/voyage, exercise

	CONCLUSION
	The content of critique?
	Irony and the (originary) technicity of critique

	Thank you
	BIBLIOGRAPHY
	Images

